Static models with spherical symmetry
Orthogonal Metrics
An orthogonal metric takes the form
\[ \begin{align}\begin{aligned} \label{eq:78}
\tensor{g}{_{\alpha \beta}} = 0 \qquad\forall\alpha \neq \beta\\implying that there are no cross-terms in the invariant interval. Thus\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:79}
\dd{s}^2 = \tensor{g}{_{\alpha \alpha}} (\dd{x}^{\alpha})^2\\The components of a metric will not be orthogonal in every coordinate\end{aligned}\end{align} \]
system; suppose that \(\tensor{g}{_{\alpha \beta}}\) are the metric
components in a particular coordinate system where the metric is
orthogonal. Let \(\tensor{g'}{_{\mu \nu}}\) be the components of the
metric in another coordinate system, then
\[\begin{split}\begin{aligned}
\label{eq:80}
\tensor{g'}{_{\mu \nu}} &= \pdv{x^{\alpha}}{x'^{\mu}} \pdv{x^{\beta}}{x'^{\nu}} \tensor{g}{_{\alpha \beta}} \\
&= \pdv{x^{\alpha}}{x'^{\mu}} \pdv{x^{\alpha}}{x'^{\nu}} \tensor{g}{_{\alpha \alpha}} \\
{ \mathrel{{\ooalign{\hidewidth$\not\phantom{=}$\hidewidth\cr$\implies$}}}}\tensor{g'}{_{\mu \nu}} &= 0 \qquad \forall \mu' \neq \nu' \nonumber\end{aligned}\end{split}\]
The orthogonal metric components are closely related to the question of
whether the coordinate system has orthogonal basis vectors. If we have a
coordinate system with basis vectors \(\set{\vec{e}_i}\), and two
vectors \(\vec{A} = A^i \vec{e}_i\),
\(\vec{B} = B^i \vec{e}_i\), then
\[ \begin{align}\begin{aligned}\vec{A} \vdot \vec{B} = (A^i \vec{e}_i) \vdot (B^j \vec{e}_j) = A^i B^j (\vec{e}_i \vdot \vec{e}_j)\\so it follows\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\tensor{g}{_{ij}} = \vec{e}_i \vdot \vec{e}_j\\and :math:`\tensor{g}{_{ij}} = 0` iff :math:`\vec{e}_i` and\end{aligned}\end{align} \]
\(\vec{e}_j\) are orthogonal.
We normally want to choose a coordinate system in which the metric
coefficients are orthogonal, to simplify the expressions for geometrical
objects; if the contravariant metric components are orthogonal then the
diagonal terms are simply the reciprocal of the covariant diagonal
terms. To see this, we know
\[ \begin{align}\begin{aligned}g^{\gamma \beta} g_{\gamma\gamma} = \delta^{\beta}_{\gamma} \quad\therefore \quad g^{\gamma\gamma} = \frac{1}{g_{\gamma \gamma}}\\The Christoffel symbols also take a simple form in an orthogonal\end{aligned}\end{align} \]
metric,
\[\begin{split}\begin{aligned}
\label{eq:109}
\Gamma^{\lambda}_{\mu \nu} &= 0 \qquad \text{for } \lambda, \mu, \nu \text{ all different.} \\
\Gamma^{\lambda}_{\lambda \mu} = \Gamma^{\lambda}_{\mu \lambda} &= \quad \frac{g_{\lambda\lambda , \lambda}}{2 g_{\lambda \lambda}}\\
\Gamma^{\lambda}_{\mu \mu} &= - \frac{g_{\mu \mu, \lambda}}{2 g_{\lambda \lambda}} \\
\Gamma^{\lambda}_{\lambda \lambda} &= \quad \frac{g_{\lambda
\lambda, \lambda}}{2 g_{\lambda \lambda}}
\end{aligned}\end{split}\]
For an affine parameter \(s\) the geodesic equation takes the form
\[ \begin{align}\begin{aligned}\dv{s} \qty( g_{\lambda \nu} \dv{x^{\nu}}{s} ) - \half \pdv{g_{\mu \nu}}{x^{\lambda}} \dv{x^{\mu}}{s} \dv{x^{\nu}}{s} = 0\\for an orthogonal metric this reduces to\end{aligned}\end{align} \]
\[\label{eq:112}
\dv{s} \qty( g_{\lambda \lambda} \dv{x^{\lambda}}{s} ) - \half
\pdv{g_{\mu \mu}}{x^{\lambda}} \qty( \dv{x^{\mu}}{s} )^2 = 0\]
Spherically symmetric metrics
Spherically symmetric solutions to the field equations are suitable for
describing the spacetime inside and around stars. In flat Minkowski
spacetime a polar coordinate system can be used to give an invariant
interval
\[ \begin{align}\begin{aligned} \label{eq:115}
\dd{s}^2 = - \dd{t}^2 + \dd{r}^2 + r^2 \qty( \dd{\theta}^2 + \sin^2{\theta} \dd{\phi}^2 )\\Surfaces of constant :math:`r` and :math:`t` have the geometry of a\end{aligned}\end{align} \]
2-sphere with an interval
\[ \begin{align}\begin{aligned} \label{eq:116}
\dd{\ell}^2 = r^2 \qty( \dd{\theta}^2 + \sin^2{\theta} \dd{\phi}^2 )\\Thus a spacetime is spherically symmetric if every point in the\end{aligned}\end{align} \]
spacetime lies on a 2D surface which is a 2-sphere. Labelling the
coordinates \((r', t, \theta, \phi)\) then every point in a
spherically symmetric spacetime lies on a 2D surface, given by
\[ \begin{align}\begin{aligned} \label{eq:117}
\dd{\ell}^2 = f(r', t) \qty[ \dd{\theta}^2 + \sin^2{\theta} \dd{\phi}^2]\\with :math:`\sqrt{f}` the radius of curvature of the 2-sphere.\end{aligned}\end{align} \]
In curved spacetime there is no trivial relation between the angular
coordinates of the two-sphere and the remaining coordinates at each
point in spacetime, but if we define
\[ \begin{align}\begin{aligned} \label{eq:118}
r^2 = f(r', t)\\and we can line-up the origins of the 2-sphere coordinate systems\end{aligned}\end{align} \]
\((\theta, \phi)\) for points in spacetime with different values of
\(r\). Spherical symmetry requires that any radial path in the space
is orthogonal to the 2D spheres on which the points along the radial
path lie, implying
\[ \begin{align}\begin{aligned} \label{eq:119}
g_{r \theta} = g_{r \phi} = 0\\So the spacetime metric is reduced to the form\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \label{eq:120}
\begin{split}
\dd{s^2} = g_{tt} \dd{t^2} + 2 g_{tr} \dd{r}\dd{t} + 2 g_{t
\theta} \dd{\theta}\dd{t} \\+ g_{rr} \dd{r^2} + r^2
\qty(\dd{\theta^2} + \sin[2](\theta) \dd{\phi^2})
\end{split}\end{split}\\Considering the curve with :math:`r`, :math:`\theta`, and :math:`\phi`\end{aligned}\end{align} \]
are constant, which is a worldline of a particle in spacetime with
constant spatial coordinates; this curve must also be orthogonal to
2-spheres on which each point lies, otherwise there would be a preferred
direction in spacetime. Thus
\[ \begin{align}\begin{aligned} \label{eq:121}
g_{t\theta} = g_{t \phi} = 0\\so the general form for a metric in a spherically symmetric spacetime\end{aligned}\end{align} \]
is
\[ \begin{align}\begin{aligned}\begin{split} \label{eq:122}
\begin{split}
\dd{s^2} = g_{tt} \dd{t^2} + 2 g_{tr} \dd{r}\dd{t} + g_{rr}
\dd{r^2} \\+ r^2 \qty( \dd{\theta^2} + \sin[2](\theta)
\dd{\phi^2})
\end{split}\end{split}\\For :math:`g_{tt}`, :math:`g_{tr}`, and :math:`g_{rr}` arbitrary\end{aligned}\end{align} \]
functions of \(r\) and \(t\).
Static Spacetime
In s static spherically symmetric spacetime we can find a time
coordinate \(t\) where
all metric components are independent of \(t\)
- the metric is unchanged under a time-reversal operation, :math:`t to
-t`.
The second property implies \(g_{tr}=0\), meaning that the interval
is
\[ \begin{align}\begin{aligned} \label{eq:123}
\dd{s^2} = - e^{\nu} \dd{t^2} + e^{\lambda} \dd{r^2} + r^2 \qty(\dd{\theta^2} + \sin[2](\theta) \dd{\phi^2})\\which is orthogonal. The functions :math:`\nu(r)` and\end{aligned}\end{align} \]
\(\lambda(r)\) replace \(g_{tt}\) and \(g_{rr}\),since the
exponential function is strictly positive for all \(r\), this is
legitimate, provided \(g_{tt}<0\) and \(g_{rr}>0\).
The Christoffel symbols for this spacetime are
\[\begin{split}\begin{aligned}
\label{eq:124}
\Gamma^t_{rt}=\Gamma^t_{tr} &= \half \nu' & \Gamma^{\theta}_{r \theta} = \Gamma^{\theta}_{\theta r} &= \frac{1}{r} \\
\Gamma^r_{tt} &= \half \nu' e^{\nu-\lambda} & \Gamma^{\theta}_{\phi \phi} &= - \sin(\theta) \cos(\theta) \\
\Gamma^r_{rr} &= \half \lambda' & \Gamma^{\phi}_{r \phi} = \Gamma^{\phi}_{\phi r} &= \frac{1}{r} \\
\Gamma^r_{\theta \theta} &= - r e^{- \lambda} &
\Gamma^{\phi}_{\theta \phi} = \Gamma^{\phi}_{\phi \theta} &=
\cot(\theta)
\end{aligned}\end{split}\]
\[\Gamma^r_{\phi\phi} = -r e^{-\lambda} \sin[2](\theta)\]
The Ricci tensor is given by
\[ \begin{align}\begin{aligned} \label{eq:125}
R_{\lambda \nu} = \Gamma^{\tau}_{\lambda \nu} \Gamma^{\sigma}_{\tau\sigma} - \Gamma^{\tau}_{\lambda \sigma} \Gamma^{\sigma}_{\tau\nu} + \Gamma^{\sigma}_{\lambda\nu,\sigma} - \Gamma^{\sigma}_{\lambda\sigma,\nu}\\so\end{aligned}\end{align} \]
\[\begin{split}\begin{aligned}
\label{eq:126}
R_{tt} &= \half e^{\nu-\lambda} \qty( \nu'' + \half \nu'^2 - \half \nu' \lambda' + \frac{2}{r} \nu') \\
\label{eq:129}
R_{rr} &= - \half \qty( \nu'' + \half \nu'^2 - \half \nu' \lambda' - \frac{2}{r} \lambda') \\
\label{eq:130}
R_{\theta\theta} &= 1 - e^{-\lambda} \qty[1+\frac{r}{2}(\nu'-\lambda')] \\
\label{eq:131}
R_{\phi\phi}&= R_{\theta\theta} \sin[2](\theta)
\end{aligned}\end{split}\]
The Schwarzschild metric
We can derive the metric for the spacetime exterior to a star from the
static spherically symmetric metric; the Schwarzchild metric; if the
star is in an isolated region of space we can assume all components of
the Ricci tensor to be zero, so
\[ \begin{align}\begin{aligned} \label{eq:127}
e^{\lambda-\nu}R_{tt}+R_{rr} = \frac{\nu'+\lambda'}{r}=0\\which implies that :math:`\nu+\lambda` is constant. At a large distance\end{aligned}\end{align} \]
from the star the metric should reduce to special relativity, so as
\[ \begin{align}\begin{aligned}r \to \infty, \quad e^{\nu}\to 1, e^{\lambda} \to 1 \implies \nu \to 0, \lambda \to 0\\and so :math:`\nu+\lambda=0`, giving\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:128}
e^{\nu} = e^{-\lambda}\\This lets us eliminate :math:`\nu` from the :math:`R_{\theta\theta}`\end{aligned}\end{align} \]
expression, equation , so
\[ \begin{align}\begin{aligned} \label{eq:132}
e^{-\lambda} (1-\lambda'r) = 1 \implies \dv{r} \qty(r e^{-\lambda})=1\\Integrating this we get\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:133}
e^{\nu} = e^{-\lambda} = 1 + \frac{\alpha}{r}\\where :math:`\alpha` is a constant.\end{aligned}\end{align} \]
Consider a material test particle, with so little rest mass that it does
not disturb the metric, which is released from rest, then
\[ \begin{align}\begin{aligned} \label{eq:134}
\dd{x^j}{\tau} = 0 \quad j = 1,2,3\\for :math:`\tau` the proper time, and\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:135}
\dv{x^0}{\tau} \equiv \dv{t}{\tau} \neq 0\\Realling that\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}g_{\alpha\beta} \dv{x^{\alpha}}{\tau} \dv{x^{\beta}}{\tau} = -1\\then\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:136}
\dv{t}{\tau} = e^{- \frac{\nu}{2}}\\Applying the geodesic equations, equation , at the instance that the\end{aligned}\end{align} \]
particle is released this reduces to
\[ \begin{align}\begin{aligned} \label{eq:137}
\dv[2]{r}{\tau} + \Gamma_{tt}^r \qty( \dv{t}{\tau})^2 =0\\Substituting the Christoffel symbol and equation we obtain\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:138}
\dv[2]{r}{t} = \frac{\alpha}{2 r^2}\\In the limit of a weak field this reduces to Newtonian gravity,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:139}
\dv[2]{r}{t} = - \frac{GM}{r^2}\\for :math:`M` the mass of the star, meaning :math:`\alpha = -2GM =-2M`\end{aligned}\end{align} \]
for \(G=1\). Thus the invariant interval is
\[\begin{split}\label{eq:140}
\begin{split}
\dd{s^2} = - \qty(1-\frac{2M}{r}) \dd{t^2} + \frac{\dd{r^2}}{\qty(1-\frac{2M}{r})} \\
+ r^2 \dd{\theta^2} + r^2 \sin[2](\theta) \dd{\phi^2}
\end{split}\end{split}\]