Conventions and terminology

\[\def\ld{£} \def\rn{\mathbb{R}^n} \def\half{\frac{1}{2}} \def\dd{\ \!\mathrm{d}} \def\dvvp#1#2{\frac{\partial #1}{\partial #2}} \def\dvvpn#1#2#3{\frac{\partial^#3 #1}{\partial #2^#3}} \def\of#1{\tilde{#1}} \def\ten#1{\mathsf{#1}} \def\diag#1{\mathrm{diag}{#1}} \def\abs#1{\left| #1 \right|} \def\pdv#1{\frac{\partial}{\partial #1}} \def\dv#1{\frac{\dd}{\dd #1}} \def\ddv#1#2{\frac{\dd #1}{\dd #2}} \def\vdot{\mathbf{\cdot}}\]

Strain

characteristic squared amplitude

The characteristic squared amplitude, \(|| h^{2} ||\), is defined as

\[|| h^{2} || = \int_{\infty}^{\infty} | h(t)|^{2} \dd{t} = \int_{\infty}^{\infty} | \tilde{h}(f) |^{2} \dd{f},\]

for \(h(t)\) and \(\tilde{h}(f)\) respectively the strain in the time, \(t\), and frequency \(f\) representations :cite:`2008CQGra..25d5002B`.

Noise