************************************* Static models with spherical symmetry ************************************* Orthogonal Metrics ================== An orthogonal metric takes the form .. math:: \label{eq:78} \tensor{g}{_{\alpha \beta}} = 0 \qquad\forall\alpha \neq \beta implying that there are no cross-terms in the invariant interval. Thus .. math:: \label{eq:79} \dd{s}^2 = \tensor{g}{_{\alpha \alpha}} (\dd{x}^{\alpha})^2 The components of a metric will not be orthogonal in every coordinate system; suppose that :math:`\tensor{g}{_{\alpha \beta}}` are the metric components in a particular coordinate system where the metric is orthogonal. Let :math:`\tensor{g'}{_{\mu \nu}}` be the components of the metric in another coordinate system, then .. math:: \begin{aligned} \label{eq:80} \tensor{g'}{_{\mu \nu}} &= \pdv{x^{\alpha}}{x'^{\mu}} \pdv{x^{\beta}}{x'^{\nu}} \tensor{g}{_{\alpha \beta}} \\ &= \pdv{x^{\alpha}}{x'^{\mu}} \pdv{x^{\alpha}}{x'^{\nu}} \tensor{g}{_{\alpha \alpha}} \\ { \mathrel{{\ooalign{\hidewidth$\not\phantom{=}$\hidewidth\cr$\implies$}}}}\tensor{g'}{_{\mu \nu}} &= 0 \qquad \forall \mu' \neq \nu' \nonumber\end{aligned} The orthogonal metric components are closely related to the question of whether the coordinate system has orthogonal basis vectors. If we have a coordinate system with basis vectors :math:`\set{\vec{e}_i}`, and two vectors :math:`\vec{A} = A^i \vec{e}_i`, :math:`\vec{B} = B^i \vec{e}_i`, then .. math:: \vec{A} \vdot \vec{B} = (A^i \vec{e}_i) \vdot (B^j \vec{e}_j) = A^i B^j (\vec{e}_i \vdot \vec{e}_j) so it follows .. math:: \tensor{g}{_{ij}} = \vec{e}_i \vdot \vec{e}_j and :math:`\tensor{g}{_{ij}} = 0` iff :math:`\vec{e}_i` and :math:`\vec{e}_j` are orthogonal. We normally want to choose a coordinate system in which the metric coefficients are orthogonal, to simplify the expressions for geometrical objects; if the contravariant metric components are orthogonal then the diagonal terms are simply the reciprocal of the covariant diagonal terms. To see this, we know .. math:: g^{\gamma \beta} g_{\gamma\gamma} = \delta^{\beta}_{\gamma} \quad\therefore \quad g^{\gamma\gamma} = \frac{1}{g_{\gamma \gamma}} The Christoffel symbols also take a simple form in an orthogonal metric, .. math:: \begin{aligned} \label{eq:109} \Gamma^{\lambda}_{\mu \nu} &= 0 \qquad \text{for } \lambda, \mu, \nu \text{ all different.} \\ \Gamma^{\lambda}_{\lambda \mu} = \Gamma^{\lambda}_{\mu \lambda} &= \quad \frac{g_{\lambda\lambda , \lambda}}{2 g_{\lambda \lambda}}\\ \Gamma^{\lambda}_{\mu \mu} &= - \frac{g_{\mu \mu, \lambda}}{2 g_{\lambda \lambda}} \\ \Gamma^{\lambda}_{\lambda \lambda} &= \quad \frac{g_{\lambda \lambda, \lambda}}{2 g_{\lambda \lambda}} \end{aligned} For an affine parameter :math:`s` the geodesic equation takes the form .. math:: \dv{s} \qty( g_{\lambda \nu} \dv{x^{\nu}}{s} ) - \half \pdv{g_{\mu \nu}}{x^{\lambda}} \dv{x^{\mu}}{s} \dv{x^{\nu}}{s} = 0 for an orthogonal metric this reduces to .. math:: \label{eq:112} \dv{s} \qty( g_{\lambda \lambda} \dv{x^{\lambda}}{s} ) - \half \pdv{g_{\mu \mu}}{x^{\lambda}} \qty( \dv{x^{\mu}}{s} )^2 = 0 Spherically symmetric metrics ============================= Spherically symmetric solutions to the field equations are suitable for describing the spacetime inside and around stars. In flat Minkowski spacetime a polar coordinate system can be used to give an invariant interval .. math:: \label{eq:115} \dd{s}^2 = - \dd{t}^2 + \dd{r}^2 + r^2 \qty( \dd{\theta}^2 + \sin^2{\theta} \dd{\phi}^2 ) Surfaces of constant :math:`r` and :math:`t` have the geometry of a 2-sphere with an interval .. math:: \label{eq:116} \dd{\ell}^2 = r^2 \qty( \dd{\theta}^2 + \sin^2{\theta} \dd{\phi}^2 ) Thus a spacetime is spherically symmetric if every point in the spacetime lies on a 2D surface which is a 2-sphere. Labelling the coordinates :math:`(r', t, \theta, \phi)` then every point in a spherically symmetric spacetime lies on a 2D surface, given by .. math:: \label{eq:117} \dd{\ell}^2 = f(r', t) \qty[ \dd{\theta}^2 + \sin^2{\theta} \dd{\phi}^2] with :math:`\sqrt{f}` the radius of curvature of the 2-sphere. In curved spacetime there is no trivial relation between the angular coordinates of the two-sphere and the remaining coordinates at each point in spacetime, but if we define .. math:: \label{eq:118} r^2 = f(r', t) and we can line-up the origins of the 2-sphere coordinate systems :math:`(\theta, \phi)` for points in spacetime with different values of :math:`r`. Spherical symmetry requires that any radial path in the space is orthogonal to the 2D spheres on which the points along the radial path lie, implying .. math:: \label{eq:119} g_{r \theta} = g_{r \phi} = 0 So the spacetime metric is reduced to the form .. math:: \label{eq:120} \begin{split} \dd{s^2} = g_{tt} \dd{t^2} + 2 g_{tr} \dd{r}\dd{t} + 2 g_{t \theta} \dd{\theta}\dd{t} \\+ g_{rr} \dd{r^2} + r^2 \qty(\dd{\theta^2} + \sin[2](\theta) \dd{\phi^2}) \end{split} Considering the curve with :math:`r`, :math:`\theta`, and :math:`\phi` are constant, which is a worldline of a particle in spacetime with constant spatial coordinates; this curve must also be orthogonal to 2-spheres on which each point lies, otherwise there would be a preferred direction in spacetime. Thus .. math:: \label{eq:121} g_{t\theta} = g_{t \phi} = 0 so the general form for a metric in a spherically symmetric spacetime is .. math:: \label{eq:122} \begin{split} \dd{s^2} = g_{tt} \dd{t^2} + 2 g_{tr} \dd{r}\dd{t} + g_{rr} \dd{r^2} \\+ r^2 \qty( \dd{\theta^2} + \sin[2](\theta) \dd{\phi^2}) \end{split} For :math:`g_{tt}`, :math:`g_{tr}`, and :math:`g_{rr}` arbitrary functions of :math:`r` and :math:`t`. Static Spacetime ================ In s static spherically symmetric spacetime we can find a time coordinate :math:`t` where #. all metric components are independent of :math:`t` #. the metric is unchanged under a time-reversal operation, :math:`t \to -t`. The second property implies :math:`g_{tr}=0`, meaning that the interval is .. math:: \label{eq:123} \dd{s^2} = - e^{\nu} \dd{t^2} + e^{\lambda} \dd{r^2} + r^2 \qty(\dd{\theta^2} + \sin[2](\theta) \dd{\phi^2}) which is orthogonal. The functions :math:`\nu(r)` and :math:`\lambda(r)` replace :math:`g_{tt}` and :math:`g_{rr}`,since the exponential function is strictly positive for all :math:`r`, this is legitimate, provided :math:`g_{tt}<0` and :math:`g_{rr}>0`. The Christoffel symbols for this spacetime are .. math:: \begin{aligned} \label{eq:124} \Gamma^t_{rt}=\Gamma^t_{tr} &= \half \nu' & \Gamma^{\theta}_{r \theta} = \Gamma^{\theta}_{\theta r} &= \frac{1}{r} \\ \Gamma^r_{tt} &= \half \nu' e^{\nu-\lambda} & \Gamma^{\theta}_{\phi \phi} &= - \sin(\theta) \cos(\theta) \\ \Gamma^r_{rr} &= \half \lambda' & \Gamma^{\phi}_{r \phi} = \Gamma^{\phi}_{\phi r} &= \frac{1}{r} \\ \Gamma^r_{\theta \theta} &= - r e^{- \lambda} & \Gamma^{\phi}_{\theta \phi} = \Gamma^{\phi}_{\phi \theta} &= \cot(\theta) \end{aligned} .. math:: \Gamma^r_{\phi\phi} = -r e^{-\lambda} \sin[2](\theta) The Ricci tensor is given by .. math:: \label{eq:125} R_{\lambda \nu} = \Gamma^{\tau}_{\lambda \nu} \Gamma^{\sigma}_{\tau\sigma} - \Gamma^{\tau}_{\lambda \sigma} \Gamma^{\sigma}_{\tau\nu} + \Gamma^{\sigma}_{\lambda\nu,\sigma} - \Gamma^{\sigma}_{\lambda\sigma,\nu} so .. math:: \begin{aligned} \label{eq:126} R_{tt} &= \half e^{\nu-\lambda} \qty( \nu'' + \half \nu'^2 - \half \nu' \lambda' + \frac{2}{r} \nu') \\ \label{eq:129} R_{rr} &= - \half \qty( \nu'' + \half \nu'^2 - \half \nu' \lambda' - \frac{2}{r} \lambda') \\ \label{eq:130} R_{\theta\theta} &= 1 - e^{-\lambda} \qty[1+\frac{r}{2}(\nu'-\lambda')] \\ \label{eq:131} R_{\phi\phi}&= R_{\theta\theta} \sin[2](\theta) \end{aligned} The Schwarzschild metric ======================== We can derive the metric for the spacetime exterior to a star from the static spherically symmetric metric; the Schwarzchild metric; if the star is in an isolated region of space we can assume all components of the Ricci tensor to be zero, so .. math:: \label{eq:127} e^{\lambda-\nu}R_{tt}+R_{rr} = \frac{\nu'+\lambda'}{r}=0 which implies that :math:`\nu+\lambda` is constant. At a large distance from the star the metric should reduce to special relativity, so as .. math:: r \to \infty, \quad e^{\nu}\to 1, e^{\lambda} \to 1 \implies \nu \to 0, \lambda \to 0 and so :math:`\nu+\lambda=0`, giving .. math:: \label{eq:128} e^{\nu} = e^{-\lambda} This lets us eliminate :math:`\nu` from the :math:`R_{\theta\theta}` expression, equation , so .. math:: \label{eq:132} e^{-\lambda} (1-\lambda'r) = 1 \implies \dv{r} \qty(r e^{-\lambda})=1 Integrating this we get .. math:: \label{eq:133} e^{\nu} = e^{-\lambda} = 1 + \frac{\alpha}{r} where :math:`\alpha` is a constant. Consider a material test particle, with so little rest mass that it does not disturb the metric, which is released from rest, then .. math:: \label{eq:134} \dd{x^j}{\tau} = 0 \quad j = 1,2,3 for :math:`\tau` the proper time, and .. math:: \label{eq:135} \dv{x^0}{\tau} \equiv \dv{t}{\tau} \neq 0 Realling that .. math:: g_{\alpha\beta} \dv{x^{\alpha}}{\tau} \dv{x^{\beta}}{\tau} = -1 then .. math:: \label{eq:136} \dv{t}{\tau} = e^{- \frac{\nu}{2}} Applying the geodesic equations, equation , at the instance that the particle is released this reduces to .. math:: \label{eq:137} \dv[2]{r}{\tau} + \Gamma_{tt}^r \qty( \dv{t}{\tau})^2 =0 Substituting the Christoffel symbol and equation we obtain .. math:: \label{eq:138} \dv[2]{r}{t} = \frac{\alpha}{2 r^2} In the limit of a weak field this reduces to Newtonian gravity, .. math:: \label{eq:139} \dv[2]{r}{t} = - \frac{GM}{r^2} for :math:`M` the mass of the star, meaning :math:`\alpha = -2GM =-2M` for :math:`G=1`. Thus the invariant interval is .. math:: \label{eq:140} \begin{split} \dd{s^2} = - \qty(1-\frac{2M}{r}) \dd{t^2} + \frac{\dd{r^2}}{\qty(1-\frac{2M}{r})} \\ + r^2 \dd{\theta^2} + r^2 \sin[2](\theta) \dd{\phi^2} \end{split}