Let \(A\) be a square matrix, and \(a_{i,j}\) be the elements of \(A\), then, the determinant of the matrix, denoted \(\det(A)\) or \(|A|\), is defined
\[\det(A) = \sum_{i_1, i_2, \dots, i_n = 1}^n \epsilon_{i_1 \cdots i_n} a_{1,i_1} \cdots a_{n,i_n}\]