Interacting scalar fields ************************* The interacting scalar field is motivated by the Lagrangian .. math:: \label{eq:53} \Lag = \half \pd{\mu} \Op{\phi} \pu{\mu} \Op{\phi} -\half m^2 \Op{\phi}^2 - \frac{\lambda}{4!} \Op{\phi}^4 This is a real scalar field, and the only dimensionless coupling we can add is :math:`\phi^4`. The energy function from the energy-momentum tensor is .. math:: \Op{T}^{00} = \pdv{\Lag}{\pd{0} \Op{\phi}} \pu{0} \Op{\phi} - \Op{\Lag} and from this we can generate a new Hamiltonian, .. math:: \label{eq:53} \Op{H} = \Op{H}_0 + \Op{H}_{\rm int} where :math:`\Op{H}_0` is the Hamiltonian of the free scalar field. The new part is .. math:: \label{eq:54} \Op{H}~{int} = - \int \Op{\Lag}~{int} \dd[3]{x} = \int \frac{\lambda}{4!} \Op{\phi}^4(x) \dd[3]{x} Ultimately we want to develop this to be able to make predictions about particle scattering which can then be tested by experiment. If :math:`\lambda` is small enough we can use perturbation theory to calculate scattering cross-sections. The Dirac interaction picture ============================= Previously .. math:: \label{eq:55} \Op{\phi}~H (\vec{x}, t) = e^{i \Op{H}(t-t_0)} \Op{\phi}~S (\vec{x}) e^{-i \Op{H}_0 (t-t_0)} with Heisenberg picture operators changing with time, but Schrodinger ones constant. In principle this is all that is necessary; :math:`\Op{\phi}~H (\vec{x}, t_0) = \Op{\phi}~S(\vec{x})` is the operator at the beginning, and we know how it changes with time. This is hard to solve, so we can define operators in the interaction picture, .. math:: \label{eq:56} \Op{\mathcal{O}}~{I}(\vec{x}, t) = e^{i \Op{H}_0(t-t_0)} \Op{\mathcal{O}}~S(\vec{x}) e^{-i \Op{H}_0(t-t_0)} for :math:`\Op{H}_0` the Hamiltonian of the free theory. Consider .. math:: \label{eq:57} \Op{\phi}~I (\vec{x},t) = e^{i \Op{H}_0(t-t_0)} \Op{\phi}~S (\vec{x}) e^{-i \Op{H}_0(t-t_0)} we’ve solved this, since it’s the field operator for the non-interacting theory. .. math:: \label{eq:58} \Op{\phi}~I (x) = \int \nm{k} \qty( \Op{a}(\vec{k}) e^{i k \vdot x} + \hOp{a} (\vec{k}) e^{i k \vdot x} ) This is related to the field operator for the interacting theory in the Heisenberg picture by .. math:: \begin{aligned} \Op{\phi}~H (\vec{x}, t) &= e^{i \Op{H}(t-t_0)} \Op{\phi}~S (\vec{x}) e^{-i \Op{H}(t-t_0)} \\ &= e^{i \Op{H}(t-t_0)} \qty[ e^{-i \Op{H}_0(t-t_0)} \Op{\phi}~I e^{i \Op{H}_0(t-t_0)} ] e^{-i \Op{H}(t-t_0)} \\ &= \hOp{U}(t,t_0) \Op{\phi}~I (\vec{x}, t) \Op{U}(t, t_0)\end{aligned} with the time evolution operator defined .. math:: \Op{U}(t, t_0) = e^{i \Op{H}_{0} (t-t_0)} e^{-i \Op{H}(t-t_0)} The interacting and free Hamiltonians do not commute, and so :math:`\Op{U}(t, t_0) \neq e^{-i \Op{H}~{int}(t-t_0)}`, and the CBH expansion must be used. We can obtain a differential equation by differentiating :math:`\Op{U}`, .. math:: \begin{aligned} i \pdv{\Op{U}}{t} &= i \qty( \pdv{t} e^{i \Op{H}_0(t-t_0)} ) e^{-i\Op{H}(t-t_0)} + i e^{\Op{H}_0(t-t_0)} \pdv{t} e^{-i \Op{H}(t-t_0)} \\ &= -e^{i \Op{H}_0(t-t_0)} \Op{H}_0 e^{-i \Op{H}(t-t_0)} + e^{i \Op{H}_0(t-t_0)} \Op{H} e^{-i \Op{H}(t-t_0)} \\ &= \underbracket{e^{i \Op{H}_0 (t-t_0)} \Op{H}~{int} e^{-i \Op{H} (t-t_0)}}_{\OP{H}~{int, I}} \times \underbracket{e^{i \Op{H}_0(t-t_0)} e^{{-i \Op{H}(t-t_0)}}}_{\Op{U}(t-t_0)}\end{aligned} We now have the problem of solving :math:` i \pdv{t} \Op{U}(t-t_0) = \Op{H}~{int,I} \Op{U}(t,t_0)` for :math:`\Op{U}(t_0, t_0)=1`, in integral form .. math:: \label{eq:60} \Op{U}(t-t_0) = 1 - i \int_{t_0}^t \dd{t_1 \Op{H}~{int,I}(t_1) } \Op{U}(t_1, t_0) but this can clearly continue *ad infinitum*, so .. math:: \begin{aligned} \Op{U} = \sum_{n=0}^{\infty} (-i)^n & \int_{t_0}^t \dd{t_1} \\ & \int_{t_0}^{t_1} \dd{t_2} \dots \int_{t_0}^{t_{n-1}} \dd{t_n} \Op{H}~{int,I}(t_1) \dots \Op{H}~{int,I}(t_n)\end{aligned} we can simplify this by changing the area we integrate over, when :math:`n=2` for example, .. math:: \begin{aligned} \int_{t_0}^t \dd{t_1} \int_{t_0}^{t_1} \dd{t_2} & \Op{H}~{int,I}(t_1) \Op{H}~{int,I}(t_2) \\ &= \half \int_{t_0}^t \dd{t_1} \dd{t_2} \Op{T} \qty{\underbracket{\Op{H}~{int,I} (t_1) \Op{H}~{int,I}(t_2)}_{{\text{symmetric under } t_1 \leftrightarrow t_2}} }\end{aligned} Then .. math:: \begin{aligned} \Op{U}(t,t_0) &= \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t \dd{t_1} \cdots \dd{t_n} \Op{T}\qty{\Op{H}~{int,I}(t_1) \cdots \Op{H}~{int,I}(t_n)} \\ &= \Op{T}e^{\qty( -i \int_{t_0}^t \dd{t'} \Op{H}~{int, I} (t') )}\end{aligned} Thus, operators in the interaction picture evolve according to .. math:: \label{eq:62} \Op{\phi}~{I}(\vec{x},t) = \Op{U}(t,t_0) \Op{\phi}~H (\vec{x}) \hOp{U}(t,t_0) with state vectors given .. math:: \label{eq:63} \ket{\phi}~I = \Op{U}(t,t_0) \ket{\phi}~H and .. math:: \label{eq:64} \Op{U}(t,t_0) = \Op{T} \exp( -i \int_{t_0}^t \dd{t'} \Op{H}~{int,I}(t')) Since :math:`\Op{U}` is an operator containing both creation and annihilation operators the number of particles can change with time. The S matrix ============ Consider an initial state, :math:`\ket{i}` of particles, at a time :math:`t=-\infty`, which interact with each other before reaching a final state, :math:`\ket{f}` at time :math:`t=\infty`. In the Heisenberg picture these states are constant and the final and initial states would be equal. After the interaction we make a new measurement of the energy and momentum of the final state and it collapses to the final state with a probability :math:`\abs{\braket{f}{i}}}^2`; we need the Interaction picture to calculate the states, however. .. math:: \begin{aligned} \label{eq:61} \Op{\phi}~{in} (\vec{x}) &= \lim_{t \to - \infty} \Op{\phi}~{H}(\vec{x},t) = \lim_{t \to - \infty} \Op{\phi}~{I}(\vec{x},t) = \Op{\phi}~S (\vec{x}) \\ \Op{\phi}~{out} (\vec{x}) &= \lim_{t \to \infty} \Op{\phi}~{H}(\vec{x},t) = \lim_{\substack{ t \to \infty \\ t_0 \to - \infty}} \hOp{U}(t,t_0) \Op{\phi}~{I}(\vec{x},t) \Op{U}(t,t_0) \end{aligned} and then the required projection is .. math:: \label{eq:65} S_{fi} = \braket{f}{i}~{H} = \lim_{\substack{t \to \infty \\ t_0 \to - \infty}} \bra{f} \Op{U}(t,t_0) \ket{i}~{I} = \bra{f} \Op{S} \ket{i}~{I} which is the S-matrix. .. math:: \begin{aligned} \label{eq:66} S_{fi} &= \lim_{\substack{t \to \infty \\ t_0 \to - \infty}} \bra{f} \Op{U}(t,t_0) \ket{i} \nonumber\\ &= \bra{f} \Op{T} \exp( -i \int_{t_0}^t \dd{t'} \Op{H}~{int,I}(t')) \ket{i} \nonumber\\ &= \bra{f} \Op{T} \exp( -i \int \frac{\lambda}{4!} \Op{\phi}~{I}^4(x) \dd[4]{x} )\ket{i}\end{aligned} This can now be calculated using perturbation theory, .. math:: \begin{aligned} \label{eq:67} \bra{f}\Op{S}\ket{i} = &\braket{f}{i} - i \frac{\lambda}{4!} \int \dd[4]{x} \bra{f} \Op{T}\Op{\phi}^4~{I}(x) \ket{i} \nonumber\\ &+\qty( -i \frac{\lambda}{4!} )^2 \int \dd[4]{x} \dd[4]{x'} \bra{f} \Op{T}\Op{\phi}^4~{I}(x) \Op{\phi}^4~I(x') \ket{i}\end{aligned} We can make use of Wick’s theorem to compute solutions involving normal-ordered products and propagators. The vacuum ========== In the free theory the lowest energy state was :math:`\ket{0}`, and was related to the field function :math:`\op{\phi}`; thus, in the interacting picture we have a new vacuum, :math:`\ket{\Omega}`, and any state in the interaction picture is not an eigenstate of the free theory, since they interact with the virtual particles from the vacuum. We shall ignore this problem for now. Wick’s Theorem ============== Consider :math:`\Op{T} \Op{\phi}(x) \Op{\phi}(y)`, and then split the positive and negative frequency components, .. math:: \label{eq:69} \Op{\phi}(x) = \Op{\phi}^+(x) + \Op{\phi}^-(x) with :math:`\Op{\phi}^+ = \int \nm{k} \Op{a}(\vec{k}) e^{-ik \vdot x}` and :math:`\Op{\phi}^- = \int \nm{k} \Op{a}(\vec{k}) e^{ik \vdot x}`. For :math:`x^0 > y^0`, .. math:: \begin{aligned} \label{eq:70} \Op{T} \Op{\phi}(x) \Op{\phi}(y) &= \quad\Op{\phi}^+(x) \Op{\phi}^+(y) + \Op{\phi}^+(x) \Op{\phi}^-(y) \nonumber\\ &\quad+ \Op{\phi}^-(x) \Op{\phi}^+(y) + \Op{\phi}^-(x) \Op{\phi}^-(y) \nonumber\\ &= \quad\Op{\phi}^+(x) \Op{\phi}^+(y) + \Op{\phi}^-(y) \Op{\phi}^+(x) \nonumber\\ &\quad+ \Op{\phi}^-(x) \Op{\phi}^+(y) + \Op{\phi}^-(x) \Op{\phi}^-(y) \nonumber\\ &\quad+ \comm{\phi^+(x)}{\phi^-(y)} \nonumber\\ &= \normbracket{\Op{\phi}(x) \Op{\phi}(y)} + D(x-y)\end{aligned} If :math:`x^0