The Mechanics of Plasma

Particle Orbit Theory

At a first glance, treating the individual particles of a plasma seems an inefficient way to develop understanding of plasmas, but it is in fact the essential underlying physics of the entire theory of plasmas. Orbit theory is only valid with high-energy, low density plasmas with infrequent collisions. We also need symmetric external fields.
In this section it is assumed that radiative effects are negligible, and that particle energies are low enough that we need only consider the non-relativistic Lorentz equation, for a particle of mass \(m_j\), and charge \(q_j\) at a position \(\vec{r}\) in an electric field \(\vec{E}(\vec{r}, t)\), and magnetic field \(\vec{B}(\vec{r}, t)\),
\[ \begin{align}\begin{aligned} \label{eq:lorentzeq} m_j \dv[2]{\vec{r}_j}{t} = q_j \qty[ \vec{E}(\vec{r},t) + \dot{\vec{r}_j} \times \vec{B}(\vec{r}, t) ]\\Whenever charge distributions or current densities are signifigant a\end{aligned}\end{align} \]

statistical or fluid approach will be required.

Constant Homogeneous Magnetic Field

Let us start with a static description, \(\vec{E} = 0, \vec{B}(\vec{r}, t) = B \neq 0\). Taking the direction of \(\vec{B}\) to define the \(z\)-axis, so \(\vec{B} = (0,0,B)\), we have the scalar product of \(\hat{z}\) and the Lorentz equation, equation ([eq:lorentzeq]) giving

\[ \begin{align}\begin{aligned} \label{eq:no-z-accel} \ddot{z} = 0\\implying that :math:`\dot{z} = v_{\parallel}` is constant. Likewise,\end{aligned}\end{align} \]

\(m \ddot{\vec{r}} \cdot \dot{\vec{r}} = 0\), so \(\half m \dot{\vec{r}}^2\) is constant. We can now find, by taking dot products of the unit vectors with equation ([eq:lorentzeq]), that

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \dv{\vec{v}_z}{t} & = 0 \\ \dv{\vec{v}_x}{t} & = -\frac{q B \vec{v}_y}{m} \\ \dv{\vec{v}_y}{t} & = - \frac{q B \vec{v}_x}{m}\end{aligned}\end{split}\\We now have a number of conditions which simlify the system, so, from\end{aligned}\end{align} \]

equation ([eq:lorentzeq]),

\[ \begin{align}\begin{aligned}\dv{\vec{v}}{t} = \frac{q}{m} \vec{v} \times \vec{B}\\and since :math:`\vec{v}_z = {\rm const}`,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\vec{z} - \vec{z}_0 = \vec{v}_{z0}t\\The :math:`x` and :math:`y` motions are more complicated;\end{aligned}\end{align} \]
\[\begin{split}\begin{aligned} \dv[2]{\vec{v}_x}{t} & = \frac{qB}{m} \dv{v_y}{t} \\ & = - \qty( \frac{q B}{m})^2 v_x \\ \ddot{\vec{v}}_x & = - \omega_{\rm c}^2 \vec{v}_x \\ v_x & = v_{x0} \exp( \pm i \omega_{\rm c} t + i \phi_x) \\ \Re(v_x) & = v_{x0} \cos( \omega_{\rm c} t)\end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} \dv[2]{v_y}{t} & = - \qty(\frac{qB}{m})^2 v_y \\ v_y & = \frac{m}{qB} \dv{v_x}{t} \\ & = - \frac{m}{qB} v_{x0} \sin( \omega_{\rm c} t) \omega_{\rm c} \\ & = \mp v_{x0} \sin( \omega_{\rm c} t ) \\ \end{aligned}\end{split}\]

Before proceeding, we’ll make the definition of the Larmour Radius,

The Larmour radius, \(r_{\rm L}\) (also gyroradius, or cyclotron radius) is the radius of the circular motion of a charged particle in a uniform magnetic field.

\[r_{\rm L} = \frac{m v_{\perp}}{|q|B}\]

We can now find the full equations of motion by considering

\[\begin{split}\begin{aligned} \nonumber v_x^2 + v_y^2 & = v_{x0}^2 \qty( \cos[2](\omega_{\rm c} t) + \sin[2]({\omega_{\rm c}t}) ) = v_{x0}^2 = v_{\perp}^2 \\ \nonumber \vec{v} & = (v_{\parallel}, v_{\perp}) \\ x - x_0 & = \frac{v_{\perp}}{\omega_{\rm c}} \sin(\omega_{\rm c}t) = r_{\rm L} \sin(\omega_{\rm c} t) \\ y - y_0 & = \frac{\mp v_{\perp}}{\omega_{\rm c}} \cos(\omega_{\rm c}t) =\mp r_{\rm L} \cos(\omega_{\rm c} t) \\ z - z_0 &= v_{z0} t = v_{\parallel} t \\ \nonumber \text{since } \frac{v_{\perp}}{\omega_{\rm c}} & = \frac{v_{\perp}m}{|q|B} \equiv r_L\end{aligned}\end{split}\]

Constant Homogeneous Magnetic and Electric Fields

Now let’s elaborate to a situation which involves an electric field. We now have, from equation ([eq:lorentzeq]),

\[ \begin{align}\begin{aligned}m \dv{\vec{v}}{t} = q\vec{E} + q \vec{v} \times \vec{B}\\and take the inner product of this with the velocity,\end{aligned}\end{align} \]
\[\begin{split}\begin{aligned} \nonumber m\vec{v}\cdot \dv{\vec{v}}{t} & = q \vec{v} \cdot \vec{E} + 0 \\ \nonumber \dv{t} \qty(\frac{mv^2}{2}) & = q \vec{v} \cdot \vec{E} \\ \nonumber & = - q \vec{v} \nabla \phi \\ \nonumber & = -q \dv{\vec{r}}{t} \cdot \dv{\phi}{\vec{r}} \\ \nonumber & = -q \dv{\phi}{t} \\ \nonumber \dv{t} \qty[ \frac{mv^2}{2}+q \phi] & = 0 \end{aligned}\end{split}\]

Now we arrange our coordinates such that \(\vec{B}=(0,0, B_z)\), and \(\vec{E} = (E_x, 0, E_z)\), so

\[\begin{split}\begin{aligned} \dv{v_z}{t} & = \frac{q}{m} E_z \\ \dv{v_x}{t} & = \frac{q}{m} E_x + \frac{qB_z}{m} v_y \\ \dv{v_y}{t} & = - \frac{qB}{m} v_x \end{aligned}\end{split}\]

The gyrocentre will shift, but to understand how we must solve these equations. To do this we take a similar approach to the last lecture.

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \ddot{v}_x & = 0 + \frac{qB}{m} \dot{v}_y \\ & = - \qty(\frac{qB}{m})^2 v_x \\ & = - \omega_{\rm c}^2 v_x \\ \ddot{v}_y & = -\omega_{\rm c} \dot{v}_x \\ & = - \frac{qB}{m} \qty( \frac{q}{m} E_x + \frac{qB}{m} v_y ) \\ & = -\omega_{\rm c}^2 \qty( v_y + \frac{q}{m} \frac{m}{qB} E_x ) \\ & = - \omega_{\rm c}^2 \qty( v_y + \frac{E_x}{B} ) \\ \dv[2]{t}\qty( v_y + \frac{E_x}{B} ) &= - \omega_{\rm c}^2 \qty( v_y + \frac{E_x}{B} ) \end{aligned}\end{split}\\Then, at :math:`t=0`, :math:`v_x = v_{x0}`, and :math:`v_y=0`,\end{aligned}\end{align} \]
\[\begin{split}\begin{aligned} v_x &= v_{x0} \cos(\omega_{\rm c} t) \\ v_y &= \mp v_{x0} \sin(\omega_{\rm c}) - \frac{E_x}{B} \end{aligned}\end{split}\]

Let’s take an alternative approach here, and work entirely with vectors again, so first,

\[\begin{split}\begin{aligned} \vec{B} \times m \dv{\vec{v}}{t} &= \vec{B} \times \qty(q \vec{E} + q \vec{v} \times \vec{B}) \nonumber \\ q \vec{B} \times \vec{E} + q \vec{B} \times \qty( \vec{v} \times \vec{B}) &= 0 \nonumber \\ q \vec{B} \times \vec{E} + q \qty(\vec{v} \cdot B^2 - \vec{B} \qty( \vec{v} \cdot \vec{B})) &= 0 \nonumber\\ \vec{v}_{\rm ge} B^2 &= \vec{E} \times \vec{B} \nonumber\\ \vec{v}_{\rm ge} &= \frac{\vec{E} \times \vec{B}}{B^2} \end{aligned}\end{split}\]

with \(v_{\rm ge}\) the velocity of the guiding centre.

Drift in an external field

As a result of this drift, the movement of a particle in this situation can be described by

\[\begin{split}\begin{aligned} \label{eq:1} \vec{v} &= \vec{u} + \vec{v}_{\rm ge} \\ m \dv{\vec{v}}{t} &= q\vec{E} + q \vec{v} \times \vec{B} \\ \dv{\vec{v}}{t} &= \dv{\vec{u}}{t} + \dv{\vec{v}_{\rm ge}}{t} \\ m \dv{\vec{v}}{t} &= m \dv{\vec{u}}{t} \\ &= q \vec{E} + q \qty( \vec{u} + \vec{v}_{\rm ge}) \times \vec{B}\\ &= q \vec{E} + q \vec{u} \times \vec{B} + q \vec{v}_{\rm ge} \times \vec{B} \\ m \dv{u_{\parallel}}{t} &= q E_{\parallel} \\ m \dv{v_{\rm ge}}{t} &= q \vec{u}_{\perp} \times \vec{B} \\ \vec{u} &= u_{\parallel} \frac{\vec{B}}{|B|} + \vec{u}_{\perp} + \vec{v}_{\rm ge} \\ m \dv{\vec{v}}{t} &= \vec{F}_{\rm ext} + q \vec{v} \times \vec{B} \\ \vec{v}_{\rm F} &= \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^2} \\ \vec{v}_{\rm g} &= \frac{m}{q} \frac{\vec{g} \times \vec{B}}{B^2}\end{aligned}\end{split}\]

Now, suppose we have a non-uniform field which varies weakly, that is,

\[\nabla \cdot \vec{B} \sim \frac{B}{L}\]

for \(L \gg r_{\rm L}\). Again, we set up our coordinates so \(\vec{B} = (0,0, B)\), then we have

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \langle \vec{F} \rangle &= \frac{1}{T} \int_0^T F(t) \dd{t} \\ F &= q \vec{v} \times \vec{B} = \hat{\imath} v_y B - \hat{\jmath} v_x B + \hat{k} \cdot 0 \\ \vec{B}(\vec{R}_{\rm v}+\vec{r}) &= \vec{B}_0 + ( \vec{r} \nabla ) \vec{B} + \cdots \\ B &= B_0 + (\vec{r} \nabla) B \\ B &= B_0 + y \cdot \pdv{y} B \\ F_x &= q v_y B \\ &= q v_y (B_{0z} +y \pdv{y}B) \\ F_y &= -q v_x B \\ &= q v_x ( B_{0z} + y \pdv{B}{y} )\end{aligned}\end{split}\\Now, using the results from earlier, for the unperturbed situations,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} F_x &= \mp q v_{x0} \sin( \omega_{\rm c} t ) \qty( B_{0z} \pm \frac{v_{x0}}{\omega_{\rm c}} \cos(\omega_{\rm c} t) \pdv{B}{y} ) \\ F_y &= - q v_{x0} \cos( \omega_{\rm c} t) \qty( B_{0z} \pm \frac{v_{x0}}{\omega_{\rm c}} \cos(\omega_{\rm c} t) \pdv{B_z}{y} )\end{aligned}\end{split}\\Then, knowing,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \langle \sin(\omega_{\rm c}t) \rangle &= 0 \\ \langle \cos(\omega_{\rm c}t) \rangle &= 0 \\ \langle \sin(\omega_{\rm c} t) \cos( \omega_{\rm c} t) \rangle &= 0 \\ \langle \cos(\omega_{\rm c} t) \cos( \omega_{\rm c} t) \rangle &= \half \end{aligned}\end{split}\\so\end{aligned}\end{align} \]
\[\begin{split}\begin{aligned} \langle F_x \rangle &= 0 \\ \langle F_y \rangle &= -q \frac{v_{x0}^2}{\omega_{\rm c}} \langle \cos[2](\omega_{\rm c}t) \rangle \pdv{B}{y} \\ &= \mp q \frac{v_{\perp}^2}{2 \omega_{\rm c}} \pdv{B}{y} \\ \langle F \rangle &= \mp q \frac{v_{\perp}^2}{2 \omega_{\rm c}} \nabla |\vec{B}| \\ v_{\rm ge} &= \frac{1}{q} \mp q \frac{v_{\perp}^2}{2 \omega_{\rm c}} \frac{\nabla |\vec{B}| \times \vec{B}}{B^2} \\ &= \pm \frac{v_{\perp}^2}{2 \omega_{\rm c}} \frac{\vec{B} \times \nabla|\vec{B}|}{B^2}\end{aligned}\end{split}\]

Inhomogeneous Magnetic Fields

In practice magnetic fields are rarely uniform, but are generally space- and time-dependent. Normally this would lead to a numerical treatment being required, but there are cases where it is possible to calculate the variation analytically, by assuming the inhomogeneity to be small.

First, consider the case when a particle moves only parallel to the magnetic field lines. The central force experienced by the particle will be

\[ \begin{align}\begin{aligned} \label{eq:centralforceinhommag} \vec{F}_{\rm cent} = \frac{m v_{\parallel}^2}{R_{\rm c}} \hat{R}_{\rm c}\\with :math:`R_{\rm c}` being the radius of curvature that the particle\end{aligned}\end{align} \]

is moving on. Now, we introduce the quantity

\[ \begin{align}\begin{aligned}\hat{B} \cdot \nabla := \pdv{S}\\as the directional derivative along a field line, which is the rate of\end{aligned}\end{align} \]

change of the magnetic field along the direction \(\hat{B}\), so

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \frac{\vec{R}_{\rm c}}{R_{\rm c}^2} &= - \pdv{S} \qty( \frac{\vec{B}}{B} ) \\&= - \frac{1}{B} \pdv{\vec{B}}{S} + \frac{\vec{B}}{B^2} \pdv{B}{S} \\ &= - \frac{1}{B^2} \qty( \vec{B} \cdot \nabla) \vec{B} + \frac{\vec{B}}{B^2} \pdv{B}{S} \\\end{aligned}\end{split}\\then, returning to the force equation, ([eq:centralforceinhommag]),\end{aligned}\end{align} \]

and, since the particle is moving along lines of constant field strength, so that \(\pdv{B}{S}=0,\)

\[ \begin{align}\begin{aligned} \label{eq:centforceinhommag2} \vec{F}_{\rm cent} = - \frac{mv_{\parallel}^2}{B^2} (\vec{B} \cdot \nabla) \vec{B}\\and the curvature drift velocity is then\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \begin{eq:curvedriftvelinhommag} \vec{v}_{\rm D} = \frac{1}{q} \frac{\vec{F}_{\rm cent} \times \vec{B}}{B^2} = \frac{m v_{\parallel}^2}{q B^4} \qty( \vec{B} \times (\vec{B} \cdot \nabla) \vec{B} )\\and\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:curvedriftradinhom} \vec{v}_{\rm R} = \frac{m v_{\parallel}^2}{q B^2} \frac{\vec{R}_{\rm c} \times \vec{B}}{R_{\rm c}^2}\\Now, in reality there is a gradient (:math:`\nabla \vec{B}`) drift\end{aligned}\end{align} \]

which accompanies the curvature drift, as \(\vec{B}\) must decrease with radius. This is because, in a vacuum we require \(\nabla \times \vec{B} = 0\) (law of conservation of energy) and \(\nabla \cdot \vec{B} = 0\) (Gauss’s Law). Expressing the problem in cylindrical coorinates it is trivial to see that \(\nabla \times \vec{B}\) can only have an \(z\)-component. Now,

\[ \begin{align}\begin{aligned}\vec{B} = (0, B_{\theta}, 0)\\so,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} ( \nabla \times \vec{B} )_z = \frac{1}{r} \pdv{r} (r B_{\theta}) = 0\\and so :math:`B_{\theta}\sim\frac{1}{r}`. Hence,\end{aligned}\end{align} \]

\(B = B_{\theta} \sim \frac{1}{R_{\rm c}}\), and, :math:`frac{nabla B}{B} = - frac{vec{R}_{rm

c}}{R_{rm c}^2}`. Using the gradient drift expression from earlier,

\[ \begin{align}\begin{aligned} \label{eq:2} \vec{v}_{\nabla B} = \pm \frac{v_{\perp}^2}{\alpha \omega_{\rm c}} \frac{\vec{B} \times \nabla B}{B^2}\\and then substituting the :math:`\nabla B` due to the curvature,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:3} \vec{v}_{\nabla B} = \pm \frac{v_{\perp}^2}{2 \omega_{\rm c}} \frac{\vec{R}_{\rm c} \times \vec{B}}{R_{\rm c}^2 B} = \half \frac{m v_{\perp}^2}{q} \frac{\vec{R}_{\rm c} \times \vec{B}}{R_{\rm c}^2 B^2}\\Then, the combined shift is\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:4} \vec{v}_{\rm D} = \vec{v}_{R} + \vec{v}_{\nabla R} = \frac{m}{q} \frac{\vec{R}_{\rm c} \times \vec{B}}{R_{\rm c}^2 B^2} \qty( v_{\parallel}^2 + \half v_{\perp}^2 )\\so the total drift due to a non-uniform field is perpendicular to both\end{aligned}\end{align} \]

\(R_{\rm c}\) and \(\vec{B}\), and so in dipole fields we have drift which is perpendicular to both \(R_{\rm c}\) and \(\vec{B}\), and the drift is charge-dependent, so there is a current, which is known as the ring current.

Magnetic Mirroring

Consider a non-uniform magnetic field, primarily in the \(z\)-direction, which has a magnitude which varies in the \(z\)-direction. Let the field be axisymmetric, such that \(B_{\theta}=0\), and \(\pdv{\theta}\cdot B=0\). Since the field lines converge and diverge, \(B_r \neq 0\).

in 1,2,3 (7,-) .. controls (3,-) and (2,-) .. (-1,-); (7,) .. controls (3,) and (2,) .. (-1,); (-2,0) – (8,0) node [right] \(z\); (-1,0) – (-1,1) node [midway, left] \(r\);

From \(\nabla \cdot \vec{B} = 0\) we have

\[\frac{1}{r} \pdv{r} (r B_r) + \pdv{B_z}{z} = 0\]

If \(\pdv{B_z}{z}\) at \(r=0\) is given, and doesn’t change much with \(r\) we have the relation

\[ \begin{align}\begin{aligned} r B_r = - \int_0^r r \pdv{B_z}{z} \dd{r} \approx \half r^2 \pdv{B_z}{z} \eval_{r=0}\\The variation of :math:`B` with :math:`r` causes a :math:`\nabla B`\end{aligned}\end{align} \]

drift of the guiding centre about the axis of symmetry, but there is no radial \(\nabla B\) drift, as \(\pdv{B}{\theta}=0\). The Lorentz force is then

\[ \begin{align}\begin{aligned}\begin{split} \label{eq:mirroringlorentz} \vec{F} = q \begin{bmatrix} v_{\theta} B_z - v_z B_{\theta} \\ - v_r B_z + v_z B_r \\ v_r B_{\theta} - v_{\theta} B_r \end{bmatrix}\end{split}\\If :math:`B_{\theta}=0` two terms are equal to zero, and as\end{aligned}\end{align} \]

\(r \to 0\), \(B_r \to 0\), since \(B_r\) vanishes on the axis. When it doesn’t vanish the azimuthal force leads to a drift in the radial direction. This drift makes the guiding centres follow the magnetic field lines. Consider the \(z\)-component of ([eq:mirroringlorentz]),

\[ \begin{align}\begin{aligned}F_z = -q v_{\theta} B_r = \half q v_{\theta} r \pdv{B_z}{z}\\averaging over a gyration,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \ev{F_z} = \mp \half q v_{\perp} r_{\rm L} \pdv{B_z}{z} = \mp \half q \frac{v_{\perp}}{\omega_{\rm c}} \pdv{B_z}{z}\\Now, making a definition,\end{aligned}\end{align} \]
\[\mu := \half \frac{m v_{\perp}^2}{B}\]

The force can then be written

\[ \begin{align}\begin{aligned} \label{eq:5} \vec{F}_{\parallel} = - \mu \pdv{B}{S} = - \mu \nu_{\parallel} B\\Now we can consider the component of the equation of motion along\end{aligned}\end{align} \]

\(\vec{B}\),

\[ \begin{align}\begin{aligned}m \dv{v_{\parallel}}{t} = - \mu \pdv{B}{S}\\then multiplying by :math:`v_{\parallel}`,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} m v_{\parallel} \pdv{v_{\parallel}}{t} &= - \mu \pdv{B}{S} v_{\parallel} \\ &= - \mu \pdv{B}{S} \cdot \dv{S}{t} \\ &= -\mu \dv{B}{t}\end{aligned}\end{split}\\Here :math:`\dv{B}{t}` is the variation of :math:`B` as seen by the\end{aligned}\end{align} \]

particle; \(\vec{B}\) itself is constant. Since \(\frac{mv^2}{2}\) is constant, due to conservation of energy, we have

\[ \begin{align}\begin{aligned} \dv{t} \frac{mv^2}{2} = \dv{t} \qty( \frac{mv_{\parallel}^2}{2} + \frac{m v_{\perp}^2}{2} ) = \dv{t} \qty( \half mv_{\perp}^2 + \mu B)=0\\since\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}m v_{\parallel} \dv{v_{\parallel}}{t} = \dv{t} \qty( \frac{mv^2}{2} ) = - \mu \dv{B}{t}\\so\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} - \mu \dv{B}{t} + \dv{t} \qty( \mu B ) = 0 \Leftrightarrow \dv{\mu}{t} = 0\\and thus the magnetic moment is a conserved quantity, and is invariant\end{aligned}\end{align} \]

in time. This invariance allows a plasma to be confined through magnetic mirrors.

As the particle moves from the weak field region into the strong-field region, \(v_\perp\) must increase in order that \(\mu\) stay constant. Since \(v_\perp^2 + v_\parallel^2\) is constant, it follows that \(v_\parallel\) must decrease, eventually to \(0\). Eventually the particle will be reflected back towards the weak-field region. We can then associate a force, \(F_{\parallel}\), or the mirror force with this action, and the plasma is magnetically trapped between two magnetic mirrors.
The trapping is not, however, perfect. If a particle has \(v_{\perp}=0\) it will have no \(\mu\), and so will not feel a mirror force. As a result, at small \(\frac{v_{\perp}}{v_{\parallel}}\) we expect that there will be some escape of particles.
Consider a particle with \(v_{\parallel,0}\) and\(v_{\perp,0}\) initially in the region \(B_{\rm min}\). By conservation of \(\mu\),
\[ \begin{align}\begin{aligned} \frac{1}{2} \frac{m v_{\perp,0}^2}{B_{\rm min}} = \half \frac{m v_{\perp}^{\prime 2}}{B_{\rm max}}\\Then, by conservation of :math:`v_{\perp}^2 + v_{\parallel}^2`,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}v_0^2 = v_{\perp,0}^2 + v_{\parallel,0}^2 = v_{\perp}^{\prime 2} + v_{\parallel}^{\prime 2}\\and so\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \frac{B_{\rm min}}{B_{\rm max}} = \frac{v_{\perp, 0}^{2}}{v_{\perp,0}^{\prime 2}} = \frac{v_{\perp,0}}{v_0^2} = \sin[2](\theta)\\so\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\sin(\theta) := \frac{v_{\perp}}{v_0}\\We can now use :math:`\theta` to describe whether the particle\end{aligned}\end{align} \]

escapes from, or is trapped by, the magnetic field.

\[\begin{split}\label{eq:6} \sin[2](\theta) = \begin{cases} < \frac{B_{\rm min}}{B_{\rm max}} & \text{escape} \\ > \frac{B_{\rm min}}{B_{\rm max}} & \text{trapped} \end{cases}\end{split}\]

Adiabatic Invariants

In a classical system which experiences a periodic motion, the action integral taken over one period of the motion will be constant. That is

\[\oint \vec{p} \dd{\vec{q}} = \text{constant}\]

If a slow change occurs in the system, such that the motion is (just) non-periodic, the constant of the motion does not change, and is called adiabatically invariant. The slow change is qualified by a change takes longer than one period of the underlying motion, so that the action is well-defined (although the integral is strictly no longer a closed loop integral).

The First Adiabatic Invariant

The first adaibatic invariant of a plasma involves the Larmour gyration, so

\[ \begin{align}\begin{aligned} \label{eq:7} \oint \vec{p} \dd{\vec{q}} = \oint m v_{\perp} r_{\rm L} \dd{\phi} = 2 \pi m v_{\perp} r_{\rm L} = 4 \pi \frac{m}{\abs{q}} \mu\\The magnetic moment, :math:`\mu`, will be conserved when the variation\end{aligned}\end{align} \]

time, \(\Delta t\) of the magnetic field, \(B\), is long, i.e. \(\Delta t \omega_{\rm c} \gg 1\). Otherwise the magnetic moment is not conserved.

The Second Adiabatic Invariant

The second adiabatic invariant involves the periodic oscillation of plasma particles between magnetic mirrors. This time

\[ \begin{align}\begin{aligned} \label{eq:8} \oint m v_{\parallel} \dd{S} = \text{constant}\\Since the guiding centre drifts across field lines, however, the motion\end{aligned}\end{align} \]

is not exactly periodic, and so the motion is adiabatically invariant. This is also longitudinally invariant \(J\), defined as the half-cycle between the two mirror points, \(a\) and \(b\), with

\[ \begin{align}\begin{aligned}J= \int_a^b v_{\parallel} \dd{S}\\with :math:`S` a path along a field line. :math:`J`-invariance is\end{aligned}\end{align} \]

violated in transit-time magnetic pumping, a method for heating a plasma. This is done by moving \(a\) and \(b\) over time to increase the \(v_{\parallel}\) as the particles approach the mirror points.

The Bulk Properties of Plasma

Plasma is the “fourth state of matter”. It refers to a state containing enough free charges for its dynamics to be dominated by long-range Coloumb forces, rather than shorter-range binary collisions 1. The presence of charge carriers in the matter cause a plasma to interact strongly with electromagnetic fields.

Producing a Plasma

There are a number of approaches to producing a plasma in the lab:

  1. photoionisation—for this we need photons with sufficient energy to remove electrons from the neutral species, e.g. 13.6 eV for Hydrogen, 24.6 eV for Helium, and 15.6 eV for molecular nitrogen. All of these energies lie within the ultraviolet region of the electromagnetic spectrum. The existence of long-lived, metastable states can help with ionisation processes (He has two, at 19.8 eV (with a half-life of 700s), and 20.61 eV; \({\rm H}_{2}\) at 11.75 eV (\(10^{-3} {\rm s}\)), and H at 0.52 eV (1 month).)

  2. electron impact—for this we accelerate any free electrons (for example, the seed electrons) in an electric field until they reach the ionising threshold. This process makes use of the Townsend process, where \(N\) electrons move along the \(x\)-axis in the presence of a uniform electric field, \(E\); then \(\delta N\) electrons are produced by electron-impact ionisation in a distance \(\dif x\), according to

    \[ \begin{align}\begin{aligned} \label{eq:townsend} \delta N = \alpha_{{\rm T}} N \dif{x}\\with :math:`\alpha_{{\rm T}}` being the ionisation co-efficient.\end{aligned}\end{align} \]

    Thus,

    \[\label{eq:townsendint} N(x) = N_0 \exp(\alpha_{\rm T} x)\]
For this lecture course, we shall assume that the plasma is 100 % ionised, i.e. there shall be no plasma-neutral interaction.

Basic Physics of Plasmas

Electrical Neutrality and the Debye Length

Suppose we have a gas of electrons and protons, i.e. a Hydrogen plasma, at a temperature, \(T\). Consider the situation where a random fluctuation of the electron population exposes some positive particles, thus an unbalanced positive charge. Exposing an unbalanced positve charge will cause a net movement of negative charge (in the form of electrons) to move towards the positive charge. What is the associated scale length for this process; can this be made consistent with thermodynamics?

(-2, 1) – (2, 1); (-2, -1) – (2,-1);

(-1, 1) – (-1, -1); ( 1, 1) – ( 1, -1);

(-1, 1) rectangle (1, -1); (0,0) node [text centered] Zone of depletion; (-1.5, 1.2) node [text centered] neutral; (1.5, 1.2) node [text centered] neutral; (0, -1.2) node [text centered] positive;

The average kinetic energy of the electrons is \(E = \frac{1}{2} k_{B }T\). The fluctuation in the electron denisty leaves behind an unbalanced charge, and therefore an associated electric potential \(\phi\). Poisson’s equation says

\[ \begin{align}\begin{aligned}\nabla^2 \phi = - \frac{ne}{\epsilon_{0}}\\with :math:`n` being the number density. So in one dimension,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\frac{\difp{2} {\phi}}{\dif x^2} = - \frac{ne}{\epsilon_0}\\which has a solution\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\phi(x) = {\rm const} - \frac{nex^2}{2 \epsilon_0}\\Note that symmetry rules out a linear term in :math:`x`. Then we have\end{aligned}\end{align} \]

boundary conditions: \(\phi(x=\pm d) = 0\). Applying these boundary consitions means that

\[\frac{ned^2}{2\epsilon_0} = {\rm const}\]

; ; ;

Now recall that we want to create this region via a small thermal fluctuation; therefore we need \(\frac{1}{2} k_{B}T\) to be the maximum energy of the electrons, and to be the maximum potential energy of the well (otherwise the electrons can’t escape.) Hence \(\frac{ned^2}{2\epsilon_0} e = \frac{1}{2} k_BT\), and so

\[ \begin{align}\begin{aligned}d =\left[ \frac{\epsilon_0 k_BT}{ne^2} \right]^{\frac{1}{2}} = \lambda_{\rm D}\\which is the Debye length, which is conventially denoted\end{aligned}\end{align} \]

\(\lambda_{{\rm D}}\). And this is the characteristic screening length for unbalanced charges.

The Debye length in a plasma is the characteristic screening length for an unbalanced charge, which is dictated by the kinetic energy of the plasma.

\[\lambda_{\rm D} = \qty[ \frac{\epsilon_0 \kbolt T}{ne^2}]^{\frac{1}{2}}\]

Plasma

Density (\(\meter^{-3}\))

Electron temperature (\(\kelvin\))

Magnetic Field (\(\tesla\))

Debye Length (\(\meter\))

Solar core

\(10^{32}\)

\(10^7\)

\(10^{-11}\)

Tokamak

\(10^{20}\)

\(10^7\)

10

\(2.10 \e{-5}\)

Hot interstellar gas

\(10^6\)

\(10^4\)

\(10^{-10}\)

\(10\)

The plasma parameter, \(N\), is the number of particles of a plasma which are contained within the Debye sphere,

\[N = n \lambda_{\rm D}^3\]

For a good plasma we want \(N \gg 1\). For the tokomak, \(N \approx 1\e{6}\), for the interstellar gas, \(N \approx 1\e{9}\). So, the Interstellar medium’s plasma is better than the tokomak’s.

Plasma Oscillation

We know that the plasma is electrically neutral over scales around the Debye Length, so there must be a restoring force driving the restoration of charge neutrality. This will produce oscillations about an equilibrium point (think of a swing).

In the simplest case is a perturbation in the electron number density, holding the ions stationary, and ignoring thermal effects. Here ions represent a perfectly balancing positive charge density, matching the electrons in equilibrium.
Let the electron number density be \(n_{\rm e}(x,t)\), and suppose \(n_{\rm e}(x,t) = n_0 + \delta n(x,t)\); a perturbation consisting of a constant, \(n_0\), and a small fluctuating component, \(\delta n(x,t)\). As in any continuum, the evolution of the mass density of a plasma is linked to the velocity field, and is given by the density conservation law:
\[ \begin{align}\begin{aligned} \label{eq:density-conservation} \frac{\partial n}{\partial t} + \nabla \cdot (n_{\rm e} \vec u) = 0\\so the change in the electron density over time, plus the flux of\end{aligned}\end{align} \]

particles through a volume should be zero.

(0,0) circle (3); (4,1.7) node [black, right] Flux in … – (2,1.7); (2.5,0) – (4,0) node[black, below, right, text width=3.5cm] and Flux out are the only ways to change the internal density.;

Now, a change in electron population or density, relative to the equilibrium, produced by an electric field is

\[\nabla \cdot \vec{E} = \frac{\rho_{\rm f}}{\epsilon_0} = \frac{-n_{\rm e}e}{\epsilon_0}\]

with \(\rho_{\rm f}\) the free-charge density. How do electrons respond to the electric field? We need the fluid momentum equation, which is a restatement of the conservation of momentum,

\[ \begin{align}\begin{aligned} \label{eq:fluidmom} m \underbrace{\left[ \frac{\partial \vec{v}_{\rm e}}{\partial t} + ( \vec{v_{\rm e}} \cdot \nabla) \vec{v}_{\rm e} \right]}_{\frac{{\rm D} \vec{v}}{{\rm D}t}} = -e \vec{E}\\with :math:`\frac{{\rm D} \vec{v}}{{\rm D}t}` being the advective\end{aligned}\end{align} \]

derivative,

\[ \begin{align}\begin{aligned} \frac{\rm D}{{\rm D}t} := \frac{\partial}{\partial t} + \vec{v} \cdot \nabla\\Let us assume that the oscillation is a small perturbation on an\end{aligned}\end{align} \]

otherwise stationary (and therefore electric-field free) equilibrium.

\[ \begin{align}\begin{aligned}n_{\rm e} = n_0 + \underbrace{n_1(x,t)}_{{\rm small}}\\thus\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\vec{v} = \vec{v_0}+\vec{v_1}(\vec{x},t)\\and taking :math:`v_0 = 0`,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\vec{E} = \vec{E_0} + \vec{E_1}(\vec{x}, t)\\with :math:`E_0 = 0` since the field is in equilibrium. We an now\end{aligned}\end{align} \]

perturb the full equations to see how our small distribution evolves:

\[ \begin{align}\begin{aligned} \frac{\partial n_1}{\partial t} + \nabla \cdot (n_0 \vec{v_0}) = 0 \tag{\star}\\So the momentum equation,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\frac{\partial \vec{v_1}}{\partial t} = - \frac{e}{m} \vec{E_1} \tag{\star \star \star}\\and\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\nabla \cdot \vec{E_1} = - \frac{n_1 e}{\epsilon_0} \tag{\star \star}\\Now, start by :math:`\frac{\partial \star}{\partial t} `,\end{aligned}\end{align} \]
\[\begin{split}\begin{aligned} \frac{\partial^2 n_1}{\partial t^2} + \nabla \cdot \left( n_0 \frac{\partial \vec{v_1} }{\partial t} \right) &= 0 \\ \frac{\partial^2 n_1}{\partial t^2}+ \nabla \cdot \left( n_{0} \left( - \frac{e}{m} \vec{E_1} \right)\right) &=0 \\ \frac{\partial^2 n_1}{\partial t^2} + n_0 (- \frac{e}{m}) \nabla \vec{E_1} &= 0 \\ \frac{\partial^2 n_1}{\partial t^2} - \frac{n_0 e}{m} (- \frac{n_1 e}{\epsilon_0}) &= 0 \quad(\text{ by } \star \star)\\ \frac{\partial^2 n_1}{\partial t^2} + \frac{n_0e^2}{\epsilon_0 m} n_1 &= 0\end{aligned}\end{split}\]
\[\ddot{n_1} + \omega_{\rm p}^2 n_1 = 0\]
\[ \begin{align}\begin{aligned}\omega_{\rm p}^2 = \frac{n_0 e^2}{\epsilon_0 m}\\Which is simple harmonic motion with fixed frequency\end{aligned}\end{align} \]

\(\omega_{\rm p}\), the plasma frequency, with \(\nu_{\rm p} = 9 \sqrt{n_0}\). This is an oscillation, but not a wave.

Plasma as a dielectric

The plasma oscillation has consequences for the propogation of electromagnetic radiation. The restoring force which produces the plasma is a direct consequence of the plasma producing a displacement current. It turns out that we can treat the plasma as a dielectric medium, and that we can see this by considering the plasma’s repsonse to an oscillating imposed electric field,

\[ \begin{align}\begin{aligned}E(t) = \hat{E} e^{-i\omega t}\\the plasma responce: consider a single particle,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}m \frac{\dif{v}}{\dif{t}} = -eE = -e \hat{E} \exp({-i \omega t})\\therefore,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} v(t) = \frac{e}{i \omega m} \hat{E} \exp(-i \omega t) = \frac{e}{i \omega m} E(t)\\and the plasma particles oscillate in response, but not at the same\end{aligned}\end{align} \]

phase. Charges in motion constitute a current, so for the current density we can write that

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \vec{j} &= -n e \vec{v} = -ne \left( \frac{e}{i \omega m} \right) \vec{E}(t) \nonumber \\ &= \frac{ne^2}{i \omega m}\vec{E}(t) \end{aligned}\end{split}\\Recall Maxwell’s equations for a dielectric:\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \begin{aligned} \nabla \times \vec{H} = \frac{\partial \vec D}{\partial t}\end{aligned}\\with :math:`\vec{D}= \epsilon_{{\rm r}} \epsilon_0 \vec{E}`, and\end{aligned}\end{align} \]

\(\epsilon_{\rm r}\) the relative permittivity of the dielectric. The full Maxwell equation reads

\[ \begin{align}\begin{aligned} \begin{aligned} \nabla \times \vec{H} &= \vec{j} + \frac{\partial \vec D}{\partial t}\end{aligned}\\in the plasma, and since :math:`\vec{D} = \epsilon_0 \vec{E}`,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \begin{aligned} \nabla \times \vec{H} = - \frac{n e^2}{i \omega m} \vec{E} - i \omega \epsilon_0 \vec{E}\end{aligned}\\and so :math:`\vec{E} \propto \exp(-i \omega t)`, and so,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \nabla \times \vec{H} &= - i \omega \left[ 1 - \frac{n e^2}{\epsilon_0 m \omega^2} \right] \epsilon_0 \vec{E} \\ &= -i \omega \epsilon \epsilon_0 \vec{E} \nonumber\end{aligned}\end{split}\\just like a dielectric, where\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:epsilon} \epsilon = 1 - \frac{\omega^2_{\rm p}}{\omega^2}\\is the plasma dielectric constant. NB\end{aligned}\end{align} \]

\(\epsilon = \epsilon(\omega)\); what’s the connection with refractive index?

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \nabla \times \vec{H} &= -i \omega \epsilon \epsilon_0 \vec{E} \\ \nabla \times (\nabla \times \vec{H}) &= -i \omega \epsilon \epsilon_0 \nabla \times \vec{E} \\ &= \nabla(\nabla \cdot H) - \nabla^2 H \\ &= - \nabla^2 \vec{H}\end{aligned}\end{split}\\since :math:`\nabla \cdot \vec{H} = 0` in a plasma. So, using a complex\end{aligned}\end{align} \]

notation for waves. Now, \(\nabla \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}\), and we will take \(\vec{B}= \mu_0 \vec{H}\), so,

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} - \nabla^2 \vec{H} &= -i \omega \epsilon \epsilon_0 \nabla \times \vec{E} \\ &= i \omega \epsilon \epsilon_0 \mu_0 \frac{\partial \vec{H}}{\partial t}\end{aligned}\end{split}\\or\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:waveeqpropeminplasma} \nabla^2 \vec{H} + \frac{\omega^2}{c^2} \epsilon \vec{H} = 0\\which is the wave equation for the propagation of electromagnetic waves\end{aligned}\end{align} \]

in the plasma. There is then a dispersion relation,

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \frac{\partial}{\partial t} & \to -i \omega \\ \vec{\nabla} & \to i \vec{k}\end{aligned}\end{split}\\so\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} -k^2 + \frac{\omega^2}{c^2}\epsilon &= 0 \\ \frac{\omega}{k} &= \frac{c}{\epsilon^{\frac{1}{2}}}\end{aligned}\end{split}\\so, :math:`\epsilon^{\frac{1}{2}}`, and the plasma refractive index is\end{aligned}\end{align} \]

then

\[ \begin{align}\begin{aligned} \label{eq:plasmarefind} n_{\rm plasma} = \left[ 1 - \frac{\omega_{\rm p}^2}{\omega^2}\right]^{\frac{1}{2}}\\Hence, if :math:`\omega < \omega_{\rm p}`, the index is purely\end{aligned}\end{align} \]

imaginary, and there is no wave propagation. If \(\omega > \omega_{\rm p}\) waves can propagate, but they will be affected. If :math:`omega = omega_{rm

p}`—as we see more closely in the full cold plasma treatment, this

represents wave absorption. The full dispersion relation can then be written

\[\label{eq:plasmadispersion} \omega^2 = \omega_{\rm p}^2 + k^2c^2\]

Cold Magnetised Plasma Model

We will generalise the dielectric concept into a plasma immersed in a uniform magnetic field, but again, we will ignore thermal fluctuations in comparison with other dynamics, i.e. a cold plasma. A cold plasma doesn’t need to have a low temperature, but must have the termodynamic-based dynamics dominated by another factor.
Recall what happens when a moving charged particle encounters a uniform magnetic field,
\[ \begin{align}\begin{aligned} \label{eq:momentumelectron} m \vec{\dot{v}} &= q(\dot{\vec{v}} \times \vec{B})\\and assume that :math:`\vec{B}` lies in the\end{aligned}\end{align} \]

\(\vec{\hat{z}}\)-direction, then

\[ \begin{align}\begin{aligned}\vec{B} = \vec{\hat{z}} B_0\\so\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\dot{\vec{v}} = \frac{q}{m} \left[ \vec{v} \times ( \hat{\vec{z}} B_0) \right]\\so in components,\end{aligned}\end{align} \]
\[\dot{v_x} = \frac{q}{m} \left[ \dot{v_y}B_0 - \dot{v}_z 0\right] = \frac{q B_0}{m} v_y\]
\[\dot{v_y} = \frac{q}{m} \left[ \dot{v_z} 0 - \dot{v}_x B_0\right] = - \frac{q B_0}{m} v_x\]
\[ \begin{align}\begin{aligned}\dot{v_z} = \frac{q}{m} 0 = {\rm const}\\so, defining the cyclotron frequency\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:cyclotron} \omega_{\rm c} = \frac{|q|B}{m}\\and for electrons,\end{aligned}\end{align} \]

\(\nu_{\rm c} = 28\ \giga \hertz\ \tesla^{-1}\), hence

\[ \begin{align}\begin{aligned}\ddot{v}_{x} = \omega_{\rm c} \dot{v_y} = \omega_{\rm c} [-\omega_{\rm c} v_x]\\that is\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\ddot{v}_x + \omega_{\rm c}^2 v_x = 0\\which is plane perpendicular to the charged particle (e.g. an\end{aligned}\end{align} \]

electron), which will thus undergo circular motion. THis motion is, however, uniform along the field. The net effect is that the particle will describe a helix.

*Exercise: Show that the magnetic field doesn’t change the particle’s energy. Hint, consider :math:`vec{v} cdot dot{vec{v}}`*
Let’s now consider the general response of a plasma in both magnetic and electric fields. We need to include the positive ions and the electrons together, plus, since this is a plasma, we need to consider the collective effects, i.e. a fluid treatment. Let’s define the perturbation,
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} n_{\rm s} & = n_0_{\rm s}+ n_1(\vec{x},t) \\ \vec{v_{\rm s}} & = \vec{v_{0,{\rm s}}} + \vec{v_1}(\vec{x},t)\end{aligned}\end{split}\\Now, under perturbation, we can linearlise the most important\end{aligned}\end{align} \]

equations:

\[\begin{split}\begin{aligned} \frac{\partial n_{\rm s} }{\partial t} + \nabla \cdot \qty(n_{\rm s} \vec{v_{\rm s}}) &= 0 \\ \dot{n_{\rm s}} + n_{0,{\rm s}} \nabla \cdot \vec{v}_{\rm s} &= 0 \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} \frac{\partial v_{\rm s}}{\partial t} + (\vec{v_{\rm s}} \cdot \nabla) \vec{v_{\rm s}} &= \frac{q_{\rm s}}{m_{\rm s}} \qty[ \vec{E_{\rm s}}+ \vec{v_{\rm s}}\times \vec{B} ] \\ \dot{\vec{v}} &= \frac{q_{\rm s}}{m_{\rm s}} [ \vec{E_1}+\vec{v_{\rm F}}\times B_0 ] \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} \vec{J} &= \sum_{\rm s} n_{\rm s} q_{\rm s}\vec{v_{\rm s}} \\ J_1 &= \sum_{\rm s} n_{0,{\rm s}} q_s \vec{v_{1, \rm s}}\end{aligned}\end{split}\]

Recall Maxwell’s equations

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \nabla \times \vec{B} &= \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \\ \nabla \times \vec{E} &= - \frac{\partial \vec{B}}{\partial t} \\ \nabla \cdot \vec{E} &= \frac{\rho_{\rm f}}{\epsilon_0} \\ \nabla \cdot \vec{B} &= 0\end{aligned}\end{split}\\*Tactic*: If we have :math:`\vec{v}` in terms of :math:`\vec{E}`,\end{aligned}\end{align} \]

(\(\vec{v}(E)\)), then, \(\vec{J} = \vec{J}(\vec{v}) = \vec{J}(\vec{E})\), with \(\vec{J} = \vec{\sigma} \vec{E}\), then if we have a conductivity law we can move to a dielectric description.

\[\begin{split}\begin{aligned} \vec{v} &= \frac{q}{m} \qty[ \vec{E} + \vec{v} \times \vec{B_0}]\\ -i \omega v_x &= \frac{q}{m} \qty[ E_x + v_yB_0] \\ &= \frac{q}{m}E_x + \omega_cv_y \\ -i \omega v_y &= \frac{q}{m}E_y - \omega_cv_x\end{aligned}\end{split}\]
so
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} -i\omega v_x &= \frac{q}{m} E_x - \frac{\omega_c}{i \omega} \qty[ \frac{q}{m}E_y - \omega_cv_x] \\ -i \omega v_x - \frac{\omega_c^2}{i \omega} v_x &= \frac{q}{m} E_x - \frac{q \omega_c}{i \omega m}E_y \\ &= \frac{q}{m}\qty[E_x - \frac{\omega_c}{i \omega} E_y] \\ \qty(1 - \frac{\omega_c^2}{\omega^2}) v_x &= - \frac{q}{i \omega m} \qty[E_x - \frac{\omega_c}{i \omega}E_y] \\ \text{since } \qty(1- \frac{\omega_c^2}{c^2}) v_y &= - \frac{q}{i \omega m} \qty[ E_x + \frac{\omega_c}{i \omega} E_y] \\ (1 - \frac{\omega_c^2}{\omega^2} \vec{v} &= M \cdot \vec{E} \\ \vec{v} &= \frac{1}{\qty(1 - \frac{\omega_{c}^2}{\omega^2})} \cdot M \cdot \vec{E}\end{aligned}\end{split}\\So, we know that we can get to this expression for\end{aligned}\end{align} \]

\(\vec{J}\)—how does this help? We now bring Maxwell’s equations into the mixture.

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \nabla \times \vec{E} &= \pdv{\vec{B}}{t} \\ \nabla \times ( \nabla \times \vec{E}) &= - \nabla \times \qty( \pdv{\vec{B}}{t}) \\ &= - \pdv{t} \qty(\nabla \times \vec{B}) \\ &= - \pdv{t} \qty[\mu_0 \vec{J} + \frac{1}{c^2} \pdv{\vec{E}{t}}] \\ &= - \pdv{t} \qty[\mu_0 \vec{\sigma} \cdot \vec{E} + \frac{1}{c^2} \pdv{\vec{E}}{t}]\end{aligned}\end{split}\\We are interested in waves, where solutions are proportional to\end{aligned}\end{align} \]

\(e^{i \vec{k}\cdot \vec{r} - i \omega t}\)

LHS:

\[ \begin{align}\begin{aligned} \begin{aligned} \nabla \times (\nabla \times \vec{E}) &= - \vec{k} \times (\vec{k} \times \vec{E})\end{aligned}\\RHS:\end{aligned}\end{align} \]

\[ \begin{align}\begin{aligned} \begin{aligned} i \omega \qty[ \mu_0 \vec{\sigma} \cdot \vec{E} - \frac{i \omega}{c^2} \vec{E}]\end{aligned}\\So, the full equation is\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\vec{k} \times (\vec{k} \times \vec{E}) + \frac{\omega^2}{c^2} K \cdot \vec{E} &= 0\\with\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}K = I + \frac{i \sigma}{\epsilon_0 \omega}\\being the dielectric tensor.\end{aligned}\end{align} \]
Define the generalised refractive index,
\[ \begin{align}\begin{aligned}\vec{n}= \frac{\vec{k}c}{\omega}\\(a refractive index with “directional complications”),\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\label{eq:genrefind} \vec{n} \times ( \vec{n} \times \vec{E} ) + K \cdot \vec{E} = 0\\To help to understand the significance of equation ([eq:genrefind]),\end{aligned}\end{align} \]

let’s choose a geometry—let’s put \(\vec{B}_0 = \vec{\hat{z}} B_0\), and let’s take a wave in the \(\vec{\hat{x}}-\vec{\hat{z}}\)-plane (with one component parallel to \(\vec{B}_0\), and one perpendicular),

\[ \begin{align}\begin{aligned} \begin{aligned} \vec{n} &= \hat{x} n \sin(\theta) + \hat{z} n \cos(\theta)\end{aligned}\\Then expand the vector cross-product\end{aligned}\end{align} \]

\(\vec{n} \times (\vec{n} \times \vec{E})\) for this choice of geometry.

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \begin{pmatrix} S-n^2 \cos^2\theta & - iD & n^2 \cos(\theta) \sin(\theta) \\ iD & S-n^2 & 0 \\ n^2 \cos\theta \sin\theta & 0 & P- n^2 \sin^2 \theta \end{pmatrix} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0\end{aligned}\end{split}\\Where we have written\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \label{eq:dielectricten} K= \begin{pmatrix} S & -iD & 0 \\ iD & S & 0 \\ 0 & 0 & P \end{pmatrix}\end{split}\\Where\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} S &= \frac{1}{2}(R+L) \\ D &= \frac{1}{2}(R-L)\end{aligned}\end{split}\\and\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} R &= 1 - \sum_S \frac{\omega^2_{\rm P_s}}{\omega^2} \qty( \frac{\omega}{\omega+\epsilon_0 \omega_{\rm c_s}}) \\ &= 1 - \frac{\omega_{\rm P}^2}{(\omega+\omega_{\rm C_+})(\omega-\omega_{\rm c^-})} \\ L &= 1 - \sum_S \frac{\omega_{\rm P_s}^2}{\omega^2} \qty(\frac{\omega}{\omega-\epsilon_{\rm s} \omega_{\rm c_s}}) \\ &= 1 - \frac{\omega_{\rm p}^2}{(\omega-\omega_{\rm c_+})(\omega+\omega_{\rm c_-})} \\ \epsilon_{\rm s} &= \begin{cases} +1 & \text{ for positive ion } \\ -1 & \text{ for negative electron} \end{cases} \\ \omega_{\rm P}^2 &= \omega_{\rm P_+}^2 + \omega_{\rm P_{-}}^2 \\ P &= 1 - \frac{\omega_{\rm P}}{\omega^2}\end{aligned}\end{split}\\For a non-trivial electric field the determinant of the matrix must\end{aligned}\end{align} \]

vanish, giving a relationship between \(\omega\) and \(k\) so th dispertion relation

\[ \begin{align}\begin{aligned} \label{eq:dispertionrelation} An^4 - Bn^2 + C = 0\\with\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} A &= S \sin[2](\theta) + P \cos[2](\theta) \\ B &= RL \sin[2](\theta) + PS (1 + \cos[2](\theta) \\ C &= PRL\end{aligned}\end{split}\\*N.B. There are two spherical cases, :math:`\theta=0`, and\end{aligned}\end{align} \]

:math:`theta= frac{pi}{2}`*.

For the case \(\theta=0\), the propagation is parallel to \(B_0\), so
\[ \begin{align}\begin{aligned}\begin{split} \begin{pmatrix} S-n^2 & -iD & 0 \\ iD & S-n^2 & 0 \\ 0 & 0 & P \end{pmatrix} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0\end{split}\\i.e. :math:`(S-n^2)^2 - D^2 = 0` if :math:`E_x, E_y \neq 0` or\end{aligned}\end{align} \]

:math:` P=0` if \(E_z\neq 0\).

When \(P=0\) we have longitudinal plasma oscillations (just like before),
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} n^2 = R & \frac{iE_x}{E_y} = - \frac{S-n^2}{D} = - \frac{S-R}{D} = 1 & \text{right circ. pol.} \\ n^2 = L & \frac{i E_x}{E_y} = - \frac{S-n^2}{D} = - \frac{S-L}{D} = -1 & \text{left circ. pol.}\end{aligned}\end{split}\\*N.B. Recall that\end{aligned}\end{align} \]

\(S = \frac{1}{2} (R+L) \therefore S-R = \half{}(-R+L) = -D\) etc.*

When \(n^2 = R, L\) we get circularly polarised transverse waves.
\(n^2=R\) has resonance at \(\omega = \omega_{\rm c_e}\), \(n^2=L\) at \(\omega=\omega_{\rm c_i}\), which are the particle cyclotron frequencies where the particle naturally oscillates. \(R, L\) has a cut-off when the numerator is zero,
\[ \begin{align}\begin{aligned} \label{eq:cutoff} \omega^2 \mp (\omega_{\rm re}-\omega_{\rm c_i}) \omega - (\omega_p^2 + \omega_{c_i}\omega_{c_e})=0\\i.e. at\end{aligned}\end{align} \]

\(\omega \sim \mp \half \omega_{\rm c_e}+ \qty(\omega_{\rm p}^2 + \frac{1}{4}\omega_{c_{e}}^2)^{\frac{1}{2}}\). At the low-frequency limit, if \(\omega \ll \omega_{\rm c_i}\) (the lowest natural frequency is \(\omega_{\rm c_i}\), then \(R \sim L \sim 1+ \frac{c^2}{c_A^2}\), where \(C_A^2 = \frac{B_0^2}{\mu_0\rho_0}\) is the Alfven speed. The refractive index is \(n^2 = 1+\frac{c^2}{c_A^2}\), i.e. \(\omega^2 = \frac{k^2 c^2}{1 + \frac{c^2}{c_A^2}} \approx k^2c_A^2\) which descripe non-dispersive Alfven waves (c.f. Magnetohydrodynamics later).

For \(\theta = \frac{\pi}{2}\), waves propagating perpendicular to \(B_0\), the dispertion relation becomes

\[ \begin{align}\begin{aligned}Sn^4 - (RL + PS)n^2 +PRL = 0\\with two roots at :math:`n^2=P`, and :math:`n^2 = \frac{RL}{S}`.\end{aligned}\end{align} \]

Characteristics of these modes are best seen in a matrix system.

\[\begin{split}\label{eq:dispertion} \begin{pmatrix} S & -iD & 0 \\ iD & S-n^2 & 0 \\ 0 & 0 & P-n^2 \end{pmatrix} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0\end{split}\]
  1. For \(E_x = E_y = 0\), and \(E_z \neq 0\), we have \(n^2=P\), i.e. we have the same dispertion relation as in the unmagnetic case. Note, \(\vec{k}\cdot \vec{E} = 0\), so we have transverse electormagnetic waves which are independent of \(B_0\), and \(E\) is parallel to \(B_0\), so all motion is aligned with \(B_0\), and therefore

    \[ \begin{align}\begin{aligned}n^2 = P \qquad \text{(Ordinary mode, O-mode)}\\and the cutoff is at the plasma frequency, with no resonance.\end{aligned}\end{align} \]
  2. Now suppose we consider \(E_z=0\), \(E_x, E_y \neq 0\), then \(n^2 = \frac{RL}{S}\) in solution,

    \[ \begin{align}\begin{aligned}\frac{iE_x}{E_y} = - \frac{S-n^2}{D} = - \frac{D}{S}\\(first row gives :math:`SE_x - iD E_y = 0`). Hence the wave is\end{aligned}\end{align} \]

    partly longitudinal, and partly transverse, since both \(E_x, E_y \neq 0\), and thus \(\vec{k} \cdot \vec{E} \neq 0\). The fact that \(E\) is perpendicular to \(B_0\) means that same for the gyration about the magnetic field which is generated, so wave properties depend on \(B_0\),

    \[ \begin{align}\begin{aligned}n^2 = \frac{RL}{S} \qquad \text{(Extraordinary mode, X-mode)}\\the cutoff :math:`R=0` or :math:`L=0`, and resonance at :math:`S=0`.\end{aligned}\end{align} \]
We have
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} R & = 1 - \frac{\omega_{\rm p}^2}{(\omega+\omega_{\rm c_+})(\omega-\omega_{c_-})} \\ L & = 1 - \frac{\omega_{\rm p}}{(\omega-\omega_{\rm c_+})(\omega+\omega_{\rm c_-})}\end{aligned}\end{split}\\since :math:`\omega \ll \omega_{c_i}`\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} R &\approx 1 - \frac{\omega_p^2}{\omega_{c_i}(-\omega_{c_e})} \\ &= 1 + \frac{\frac{ne^2}{\epsilon_0 m_e} + \frac{n e^2}{\epsilon_0 m_i} } {\frac{eB_0}{m_i} \frac{e B_0}{m_e}} \\ &= 1 + \frac{n(m_i+m_e)}{\epsilon_0 B_0^2} \\ &\approx 1 + \frac{\mu_0 \rho_0 c^2}{B_0^2} \\ &= 1 + \frac{c^2}{c_A^2} \approx \frac{c^2}{c_A^2}\end{aligned}\end{split}\\For :math:`\theta = 0`, :math:`\omega \ll \omega_{c_i}`, which are\end{aligned}\end{align} \]

both circular polarisations for transverse Alfven waves. Then,

\[ \begin{align}\begin{aligned}n^2 = \frac{kL}{S} \therefore \omega^2 = k^2 c_A^2\\and\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}S = \half (R+L)\\but :math:`n^2 = P`, so there is a cutoff; no low frequency is\end{aligned}\end{align} \]

possible.

For \(n^2 = \frac{RL}{S}\) (the X-mode) at low frequency. We have a compressional Alfven wave, which is different to the \(\theta=0\) case, even though they share a dispersion relation.
For \(\theta=\frac{\pi}{2}\),
\[ \begin{align}\begin{aligned}\begin{split} \begin{pmatrix} S & -iD & 0 \\ iD & S-n^2 & 0 \\ 0 & 0 & P-n^2 \end{pmatrix}\end{split}\\So\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} S E_x - iD E_y & = 0 \\ \frac{i E_x}{E_y} &= - \frac{D}{S}\end{aligned}\end{split}\\So what are the implications for the Alfven wave? Since :math:`R`,\end{aligned}\end{align} \]

\(L\) are approximately equal, for \(\omega \ll \omega_c\),

\[ \begin{align}\begin{aligned}\qty|\frac{E_x}{E_y}| \ll 1\\and so :math:`|E_y| \gg |E_x|`. From the equations of motion,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \dot{v}_x &= - \frac{e}{m} E_x - \omega_c v_y \\ \dot{v}_y &= - \frac{e}{m} E_y - \omega_c v_x\end{aligned}\end{split}\\we can differentiate the system with respect to :math:`t` to show\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\qty| \frac{v_x}{v_y} | \approx \frac{\omega_c}{\omega} \quad \text{when}\quad \qty| \frac{E_x}{E_y} | \approx 0\\We know that the O-mode cuts off at :math:`\omega=\omega_{\rm p}`.\end{aligned}\end{align} \]

For the X-mode, \(n^2= \frac{RL}{S}\), the two cutoffs occur at \(R=0\) or \(L=0\). This is the same as the circuarly polarised waves as before, but we have two cutoff frequencies for the same mode. Resonance occurs at \(S=0\), and again, this occurs at two places, an upper and a lower hybrid frequency:

\[\begin{split}\begin{aligned} \omega_u^2 &= \omega_p^2 + \omega_{c_e}^2 \\ \omega_l^2 &= \omega_p^2 \frac{\omega_{c_i}\omega_{c_e}}{\omega_p^2+\omega_{c_e}^2}\end{aligned}\end{split}\]

Ideal Magnetohydrodynamic Plasmas

Here we consider the behaviour of plasmas at long wavelengths, and low frequencies; in this limit we can retrieve classical thermodynamic relations. Starting with the model equations,

\[\begin{split}\begin{aligned} \pdv{\rho}{t} + \nabla \cdot (\rho \vec{u}) &= 0 \\ \rho \adv{\vec{u}}{t} &= - \nabla p + \vec{J} \times \vec{B} + (q \vec{E}) \\ \adv{t} \qty[ p \rho^{-\gamma} ] &= \frac{2}{3} \rho^{-\gamma} \qty[ \vec{J} - q \vec{u}] \cdot \qty[ \vec{E} + \vec{u} \times \vec{B}] \\ \vec{J} &= \sigma \qty[ \vec{E} + \vec{u} \times \vec{B}] \end{aligned}\end{split}\]
with \(\rho\) the mass density, \(\vec{u}\) the bulk fluid velocity field, \(p\) the scalar pressure, \(q\) the unbalanced charge, \(\vec{J}\) the current density, and \(\vec{B}\) the magnetic field. We take \(\gamma = \flatfrac{5}{3}\)
We assume there is no \(\vec{E}\) in the momentum equation, partly because we assume the plasma is a single species fluid with all the electrical properties of an electron-ion plasma, but with no charge separation. Additionally, we can consider the electric field as arrising only due to frame changes.
In this situation, Maxwell’s equations are
\[\begin{split}\begin{aligned} \nabla \times \vec{B} &= \mu_0 \vec{J} \\ \nabla \times \vec{E} &= - \pdv{\vec{B}}{t} \\ \nabla \cdot \vec{B} &= \nabla \cdot \vec{E} =0 \end{aligned}\end{split}\]

Notably, Ampere’s law contains no mention of displacement current, and there is no allowance for charge separation. An ideal MHD plasma exhibits perfect conductivity, so

\[ \begin{align}\begin{aligned}\vec{E} + \vec{u} \times \vec{B} = \eval{\frac{\vec{J}}{\sigma}}_{\sigma \to \infty}\\thus\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\vec{E} + \vec{u} \times \vec{B} =0\\and\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\adv{t}\qty[p \rho^{-\gamma}] = 0\\In order to understand how the ideal MHD plasma behaves we need to look\end{aligned}\end{align} \]

at the normal modes, just as with the cold plasma case. Take a perturbation,

\[\begin{split}\begin{aligned} p & = p_0 + p_1 (\vec{r}, t) \\ \vec{B} & = \vec{B}_0 + \vec{B}_1 (\vec{r}, t) \\ \vec{u} & = \vec{u}_0 + \vec{u}_1 (\vec{r}, t) \\ \rho & = \rho_0 + \rho_1 (\vec{r}, t) \\ \vec{J} & = \vec{J}_0 + \vec{J}_1 (\vec{r}, t) \end{aligned}\end{split}\]

Then we assume \(\vec{u}_0 = 0\) (stationary equilibrium), and \(\vec{J}_0 = \frac{\nabla \times \vec{B}}{\mu_0} = 0\).

Then linearise,

\[\pdv{\rho}{t} + \nabla \cdot (\rho \vec{u}) = 0 \to \pdv{\rho_1}{t} + \vec{u}_0 \cdot \rho_1 = 0\]

then, assuming all perturbed quantities are proportional to \(\exp[ i(\vec{k} \cdot \vec{r} - \omega t)]\), so

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \rho_1 &= \frac{\rho_0}{\omega} (\vec{k} \cdot \vec{u}_1) \tag{I} \\ \rho_0 &= \pdv{\vec{u}_1}{t} = - \nabla p_1 + \vec{J}_1 \times \vec{B}_0 \end{aligned}\end{split}\\Wave analysis on the momentum equation leads to\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \omega \rho_0 \vec{u}_1 &= \vec{k} p_1 + \frac{\vec{B}_0 \cdot \vec{B}_1}{\mu_0} \vec{k} - \frac{(\vec{k} \cdot \vec{B}_0)}{\mu_0} \vec{B}_1 \tag{II} \\ \pdv{\vec{B}}{t} &= - \nabla \times \vec{E} = \nabla \times (\vec{u}_1 \times \vec{B}_0) \\ \omega B_1 &= ( \vec{k} \cdot \vec{u}_1) \vec{B}_0 - (\vec{k} \cdot \vec{B}_0 ) \vec{u}_1 \tag{III} \\\end{aligned}\end{split}\\Since :math:`p \rho^{-\gamma}` is constant,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\adv{t} \qty( p \rho^{-\gamma} )\\so\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}p_1 = c_{\rm s}^2\rho_1 \tag{IV}\\where :math:`c_{\rm s}^2` is the sound speed in the plasma, and since\end{aligned}\end{align} \]

\(\nabla \cdot \vec{B} = 0\),

\[ \begin{align}\begin{aligned}\vec{k} \cdot \vec{B}_1 = 0 \tag{V}\\We now want to eliminate :math:`p_1` and :math:`B_1` from (II), to\end{aligned}\end{align} \]

obtain everything in terms of \(u_1\). \(p_1\) can be eliminated using (IV), \(\rho_1\) using (I), and \(B_1\) using (III).

This process yields

\[ \begin{align}\begin{aligned}\begin{split} \label{eq:mhdequation} \begin{split} \qty[ \omega^2 - \frac{(\vec{k} \cdot \vec{B}_0 )^2}{\mu_0 \rho_0}] \vec{u}_1 = \qty[(r_{\rm s}^2 + c_{\rm A}^2) \vec{k} - \qty( \frac{\vec{k} \cdot \vec{B}_0}{\mu_0 \rho_0} ) B_0] (\vec{k} \cdot \vec{u}) \\- \frac{(\vec{k}\cdot \vec{B}_0)(\vec{B}_0 \cdot \vec{u}_1)}{\mu_0 \rho_0} \vec{k} \end{split}\end{split}\\with :math:`c_{\rm A}^2 = \frac{B_0^2}{\mu_0 \rho_0}`. Now we choose\end{aligned}\end{align} \]
\[\begin{split}\begin{aligned} \vec{B}_0 &= B_0 \hat{b} \\ \vec{k} &= k \hat{z} \end{aligned}\end{split}\]

Then,

\[ \begin{align}\begin{aligned}\begin{split} \label{eq:mhdincoordis} \begin{split} \qty[ \omega^2 - k^2 c_{\rm A}^2 (\hat{z} \cdot \hat{b})^2 ] \vec{u}_1 = \qty[ k^2 (c_{\rm s}^2 + c_{\rm A}^2) \hat{z} + \vec{k}^2 c_{\rm A}^2 (\hat{z} \cdot \hat{b} ) \hat{b} ](\hat{z} \vec{u}_1) \\ - k^2 c_{\rm A}^2 (\hat{z} \cdot \hat{b}) (\hat{b} \cdot \vec{u}_1) \hat{z} \end{split}\end{split}\\Let’s consider a special case; In MHD :math:`\omega` is much less than\end{aligned}\end{align} \]

the minimum cyclotron frequency for ions and plasma frequency, and the wavelength is much greater than the Debye length of the Larmour Radius. Consider the component of \(\vec{u}_1\) perpendicular to the direction of motion, \(\hat{z}\). To find this direction take the cross-product of the whole equation ([eq:mhdincoordis]), with \(\hat{z}\). Now take \(\hat{z} \cdot \hat{b} = \cos(\theta)\).

\[ \begin{align}\begin{aligned} \begin{aligned} (\omega^2 - k^2 c_A^2 \cos[2](\theta))(\hat{z} \times \vec{u}_1) &= -k^2 c_A^2 \cos(\theta) (\hat{z} \cdot \vec{u}_1)(\hat{z} \times \hat{b})\end{aligned}\\Suppose the plasma is incompressible, so\end{aligned}\end{align} \]

\(\hat{z} \cdot \vec{u}_1 = 0\), and we still have \((\omega^2 - k^2 \cos[2](\theta))(\hat{z} \times \vec{u}_1) = 0\). Clearly a non-trivial solution, governed by the dispertion relation is possible: a wave which satisfies

\[ \begin{align}\begin{aligned} \label{eq:shearalfven} \omega^2 = k^2 c_A^2 \cos[2](\theta)\\which is an *shear Alfvén wave*. We have a transverse wave at low\end{aligned}\end{align} \]

frequency–for \(\theta=0\) this is just like a cold plasma solution, but at \(\theta=\frac{\pi}{2}\) there is no transverse wave solution, but the cold plasma has the low frequency limit of the X-mode, the compressed Alfvén mode.

The general solution for MHD waves is that we have a dispertion reltion,

\[ \begin{align}\begin{aligned}\qty(\omega^2 - k^2 c_A^2 \cos[2](\theta) ) \cdot \qty( \omega^4 - k^2( c_A^2 + c_s^2) \omega^2 + k^2c_s^2c_A^2 \cos[2](\theta))\\Then there are three modes,\end{aligned}\end{align} \]
  • Alfven

    \[\omega^2 = k^2 c_A^2 \cos[2](\theta)\]
  • Fast (+) and Slow (-) Magnetosonic

    \[2 \frac{\omega^2}{k^2} = c_s^2 + c_A^2 \pm \sqrt{( c_s^2 + C_A^2)^2 - 4k^2 c_s^2 c_A^2 \cos[2](\theta)}\]

For the fast MS mode, \(\frac{B^2}{2 \mu_0}\) magnetic pressure enhanes the thermodynamic pressure, \(p\), by varying in phase with it. Fr the slow MS mode the magnetic presure and thermodynamic pressure oppose one another. Magnetic pressure plays a powerful conceptual role in MHD.

Recall the equilibrium; to see how significant the magnetic pressure can be,

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \adv{t} &= 0\\ \nabla p_0 &= \vec{J}_0 \times \vec{B}_0 \end{aligned}\end{split}\\before we set :math:`\vec{J}_0 =0` (so the plasma had a uniform\end{aligned}\end{align} \]

\(\vec{B}_0\) and \(p_0\), however, we can generalise this, since

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \nabla \times \vec{B} &= \mu_0 \vec{J}_0 \\ \nabla p_0 &= \frac{1}{\mu_0} (\nabla \times \vec{B}_0) \times \vec{B}_0\end{aligned}\end{split}\\which can be rewritten in the form\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \nabla \qty(p_0 + \half \frac{\vec{B}_0^2}{\mu_0}) + \frac{1}{\mu_0}( \vec{B}_0 \cdot \nabla) \vec{B}_0\\for the simplest geometry take\end{aligned}\end{align} \]

\(\vec{B}_0 \cdot \nabla \vec{B}_0 = 0\), for equilibrium,

\[ \begin{align}\begin{aligned} \label{eq:equilibrium} \nabla \qty(p_0 + \frac{\vec{B}_0^2}{2 \mu_0} ) = 0\\That is, the plasma pressure plus the magnetic pressure is constant.\end{aligned}\end{align} \]

Plasma tends to avoid the strongest field regions in equilibrium. This is a possible mechanism for confinement. How could this go wrong? Suppose we have a cylinder of plasma, which is carrying current. It has an azimuthal \(\vec{B}_0\)

(2,0) ellipse (.2 and .5);

(-2,-.5) rectangle (2, .5); (-2,0) ellipse (.2 and .51);

in -1,-.5,…, 1.5 (, -.5) ..controls (+.2, -.3) and (+.2, .3) .. (,.5); (-1.8, -.5) ..controls (-1.8+.2, -.3) and (-1.8+.2, .3) .. (-1.8,.5) node [midway, right] \(\vec{B}_0\);

(0,.9) – (2,.9) node [midway, fill=white] \(\vec{J}\);

If we bend the cylinder, but wish to maintain \(\vec{J}_0\),

The magnetic pressure is stronger on the inside of the bend than the outside. Thus the plasma is push upwards, wosening the distortion. This gives a kink instability.

Pinch Instability

in 1.5,2,…, 4 (7,-) .. controls (3,-) and (2,-) .. (-1,-) (7,-) .. controls (10,-) and (12,-) .. (15,-); (7,) .. controls (3,) and (2,) .. (-1,) (7,) .. controls (10,) and (12,) .. (15,);

We find that \(\vec{B}_0\) is more intense at the pinch because \(\vec{J}_0\) is larger. Hence the plasma is expelled from the pinched region, drawing the current density up, and making the problem worse. The plasma is described as pinching off.

Plasmas with Collision

Consider a binary collision of two plasma particles, where the Coulomb force between the particles is

\[ \begin{align}\begin{aligned} \label{eq:15} F = \frac{q_1 q_2}{4 \pi \epsilon_0 r^2}\\For simplicity, we restrict the interaction to an electron and a heavy\end{aligned}\end{align} \]

ion.

(0,0) circle (0.5) node [midway, white] +; (-4,1) circle (0.2) node [white] -;

(-3.7,1) – (0,1) arc (90:40:1) – ++(130:-2);

(0,1) – (4,1) (1,0)–(4,0);

(3,1) – (3,0) node [right, midway] \(b = r \sin(\theta)\);

Consider the change of \(v_{\perp}\), with a massive ion, \(m_{\rm ion} \gg m_{\rm e}\). The change of perpendicular momentum from the equation of motion can be written

\[ \begin{align}\begin{aligned} \label{eq:16} m_{\rm e} v_{\perp} = \int_{-\infty}^{+\infty} F \dd{t} \sim F \Delta t\\So, we can approximate,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} m_{\rm e} v_{\perp} \approx \frac{q_{\rm e} q_{\rm i}}{4 \pi \epsilon_0 r^{2} } \frac{r}{v} = \frac{q_{\rm e} q_{\rm i}}{4 \pi \epsilon_0 r v }\\For large-angle collisions (where the deflection is close to\end{aligned}\end{align} \]

\(90^{\circ}\)), the change of \(m_{\rm e} v_{\perp}\) is of the order of \(mv\) itself, so,

\[ \begin{align}\begin{aligned} m_{\rm e} v_{\perp} \approx m_{\rm e} v = \frac{q_{\rm e} q_{\rm i}}{4 \pi \epsilon_0 r v }\\and :math:`r \approx b`, so we can estimate :math:`b` as\end{aligned}\end{align} \]
\[b = \frac{q_{\rm e} q_{\rm i}}{4 \pi \epsilon_0 v^2 m_{\rm e}}\]

The interaction between two particles can be described using the interaction cross-section, \(\sigma\), where

\[\sigma = \pi b^2\]

with \(b\) being the area of the disc. We simply assume the interaction is happening for impact parameters

\[ \begin{align}\begin{aligned}b \ll \frac{q_{\rm e} q_{\rm i}}{4 \pi \epsilon_0 v^2 m_{\rm e}}\\and no interaction for large :math:`b`.\end{aligned}\end{align} \]

For this interaction the cross-section is

\[ \begin{align}\begin{aligned} \label{eq:17} \sigma_{\rm ei} = \pi b^2 = \pi \frac{q_{\rm e}^2 q_{\rm i}^2}{(4 \pi \epsilon_0)^2 (m_{\rm e} v)^2}\\The collision frequency is then\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\nu_{\rm ei} = n \sigma_{\rm ei} v\\Then, the e-i collision frequency for a :math:`z=1` plasma, so that\end{aligned}\end{align} \]

\(n_{\rm i} \approx n_{\rm e}\), and \(q_{\rm i} = q_{\rm e} = e\) is

\[ \begin{align}\begin{aligned} \label{eq:18} \nu_{\rm ei} = n_{\rm e} \sigma_{\rm ei} v \approx \frac{\pi n_{\rm e} e^4}{(4 \pi \epsilon_0)^2 m_{\rm e}^2 v^3} \sim \frac{n_{\rm e}}{v^3}\\For the average electron velocity with thermal energy,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}k_{\rm B} T_{\rm e} = \half m_{\rm e} v_{\rm te}^2\\thus\end{aligned}\end{align} \]
\[v_{\rm te} = \qty( \frac{2 k_{\rm B} T_{\rm e}}{m} )^{-\frac{1}{2}}\]
\[ \begin{align}\begin{aligned} \label{eq:19} \nu_{\rm ei} \approx \frac{\sqrt{2}}{64 \pi} \frac{\omega_{\rm pe}^4}{n_{\rm e}} \qty( \frac{k_{\rm B} T_{\rm e}}{m})^{-\frac{3}{2}} = \frac{\pi n_{\rm e} e^4}{2^{\frac{3}{2}} (4 \pi \epsilon_0)^2 m_{\rm e}^2 \qty( \frac{k_{\rm B} T_{\rm e}}{m_{\rm e}})^{\frac{3}{2}}}\\So we conclude\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\nu_{\rm ei} \sim nT^{- \frac{3}{2}}\\This is a rough estimate, there are many small-scale collsions in\end{aligned}\end{align} \]

plasma, and a more rigorous estimate indicates

\[ \begin{align}\begin{aligned} \label{eq:20} \nu_{\rm ei} = \frac{4 \sqrt{2}}{3 \sqrt{\pi}} \frac{\pi n_{\rm e} e^4 (\log(\Lambda)}{(4 \pi \epsilon_0)^2 m_{\rm e}^{\half} (k_{\rm B}T_{\rm e})^{\frac{3}{2}}} \approx \omega_{\rm pe} \frac{\log(\Lambda)}{\Lambda}\\Where :math:`\Lambda` is the number of electrons in the Debye Sphere,\end{aligned}\end{align} \]

\(\Lambda \sim n_{\rm e} \lambda^3_{\rm De}\). \(\log(\Lambda)\) is the Coulomb logarithm, and is normally assumed to be constant, with a value in the range \(\log(\Lambda) \in [10,30]\).

Mean Free Path

Let us estimate the mean free path of an electron in a plasma;

\[\lambda = \frac{v_{\rho}}{\nu_{\rm ei}} \sim \frac{\omega_{\rm pe} \lambda_{\rho \rm e}}{\nu_{\rm ei}} \approx \qty( \frac{\omega_{\rm pe}}{\nu_{\rm ei}}) \lambda_{\rm De}\]

The mean free path of the solar corona. In the plasma composing the solar corona,

\[ \begin{align}\begin{aligned}n_{\rm e} \sim 1 \e{15} \meter^{-3} , \qquad k_{\rm B} T_{\rm e} \sim 1\e{2} \electronvolt\\Then\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\nu_{\rm ei} \approx \frac{5\e{-11} \times 10^{15}}{10^3} \approx 50 \second^{-1}\\and since\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\omega_{\rm pe} \approx 2 \pi \nu_{\rm pe}, \qquad \nu_{\rm pe} = 9(n_e)^{\half}\\we find\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \omega_{\rm pe} \sim 2 \pi \times 9 \times 3.2\e{3} \times 10^4 = 2 \pi \times 3\e{8} \second^{-1} \gg \nu_{\rm ei}\\Hence the mean free path is much larger than the Debye length.\end{aligned}\end{align} \]

Collision Equilibration Times

For electron-ion collisions in plasma

\[\nu_{\rm ei} \propto \frac{n}{m_{\rm e}^{\half} T_{\rm e}^{\frac{3}{2}}}\]

We define the quantity \(\tau_{\rm ei} := \frac{1}{\nu_{\rm ei}}\) which is the time between collisions, or the mean free time. For the frequency of electron-electron collisions (taking into account the finite mass of the scattering particle, and replacing it with \(m_{\rm e}\)) we have a factor of two, and so,

\[ \begin{align}\begin{aligned}\nu_{\rm ee} \approx \nu_{ei}\\For ion-ion collisions the :math:`m_{\rm e}` must become\end{aligned}\end{align} \]

\(m_{\rm i}\), and so

\[ \begin{align}\begin{aligned} \nu_{\rm ii} \approx \qty( \frac{m_{\rm e}}{m_{\rm i}} )^{\half} \nu_{\rm ee}\\For ion-electron collsions the transformation to the centre-of-mass\end{aligned}\end{align} \]
frame introduces a factor of :math:`frac{m_{rm e}}{m_{rm

i}}`, hence

\[\nu_{\rm ie} \approx \frac{m_{\rm e}}{m_{\rm i}} \nu_{\rm ee}\]

If \(T_{\rm e} \neq T_{\rm i}\), there will be an exchange of temperature caused by the collisions, and the timescales of the interactions are

\[\tau_{\rm ee}^{\rm E} : \tau_{\rm ii}^{\rm E} : \tau_{\rm ei}^{\rm E} \sim 1 : \qty( \frac{m_{\rm i}}{m_{\rm e}} )^{\half} : \frac{m_{\rm i}}{m_{\rm e}}\]

It is worth noting that \(\nu_{\rm ei}\) is not the rate at which equilibrium is established between electrons and ions, but is instead the rate of momentum transfer from electrons to ions, and not the rate of energy transfer between them. The relaxation time for electorn-ion equiilibrium is given by ion-electron collisions, and \(\frac{m_{\rm e}}{m_{\rm i}} \nu_{\rm ee}\). For a Hydrogen plasma

\[ \begin{align}\begin{aligned}\frac{m_{\rm i}}{m_{\rm e}} = 1836\\so\end{aligned}\end{align} \]
\[\label{eq:21} \tau_{\rm ee} : \tau_{\rm ii} : \tau_{\rm ei}^{\rm E} \sim 1 : 43 : 1836\]

Resitivity and Collisions

Consider an unmagnetised quasineutral plasma with \(n_{\rm i} \approx n_{\rm e}\) of electrons and ions both with charge \(q = e\). In response to an applied electric field, \(\vec{E}\), a current will flow in the plasma. The current density will be

\[ \begin{align}\begin{aligned} \label{eq:22} \vec{\jmath} = n_{\rm i} e \vec{v}_{\rm i} - n_{\rm e} e \vec{v}_{\rm e}\\Electrons have a much smaller mass than the ions, so the plasma current\end{aligned}\end{align} \]

is predominantly carried by the electrons, hence,

\[ \begin{align}\begin{aligned} \label{eq:23} m_{\rm e} n_{\rm e} \dv{\vec{v}_{\rm e}}{t} = -e n_{\rm e} \vec{E} + m_{\rm e} n_{\rm e} (\vec{v}_{\rm i} - \vec{v}_{\rm e}) \nu_{\rm ei}\\In a steady state there is no change with time, so\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\vec{E} = \frac{m_{\rm e} n_{\rm e} (\vec{v}_{\rm i} - \vec{v}_{\rm e}) \nu_{\rm ei}}{e n_{\rm e}} = \frac{e n_{\rm e} (\vec{v}_{\rm i}-\vec{v}_{\rm e} ) m_{\rm e} \nu_{\rm ei}}{e^2 n_{\rm e}} = \frac{m_{\rm e} \nu_{\rm ei}}{e^2 n_{\rm e}} \vec{\jmath}\\According to Ohm’s law,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:24} \vec{E} = \rho \vec{\jmath}\\where :math:`\rho` is the resistivity,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \rho = \frac{m_{\rm e}}{e^2 n_{\rm e}} \nu_{\rm ei} = \frac{1}{\sigma}\\with :math:`\sigma` the conductivity. Conservation of momentum prevents\end{aligned}\end{align} \]

electron-electron collisions contributing to the resisitivity, and so

\[ \begin{align}\begin{aligned} \rho = \frac{m_{\rm e}}{e^2 n_{\rm e}} \frac{\pi n_{\rm e} e^4 \log(\Lambda)}{\qty(4 \pi \epsilon_0)^2 m_{\rm e}^{\half} \qty(k_{\rm B} T)^{\frac{3}{2}}} = \frac{\pi m_{\rm e}^{\half} e^2 \log(\Lambda)}{(4 \pi \epsilon_0)^2 (k_{\rm B}T)^{\frac{3}{2}}}\\Again, it is worth noting that resistivity is independent of density,\end{aligned}\end{align} \]

and decreases with growing temperature.

Diffusion of Particles

The fluid equation of motion including collisions for electrons is

\[ \begin{align}\begin{aligned} \label{eq:25} m_{\rm e} n_{\rm e} \dv{\vec{v}}{t} = q n_{\rm e} \vec{E} - \nabla p - m_{\rm e} n_{\rm e} \nu_{\rm ei} \vec{v}\\for pressure :math:`p`, and assuming\end{aligned}\end{align} \]

\(n_{\rm e} \approx n_{\rm i} = n\), and \(\nu_{\rm ei}\) is constant. Considering a steady state,

\[ \begin{align}\begin{aligned} q n_{\rm e} \vec{E} - \nabla p - m_{\rm e} n_{\rm e} \nu_{\rm ei} \vec{v} = 0\\and so\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \vec{v} &= \frac{1}{m_{\rm p} m_{\rm e} \nu_{\rm ei}} \qty( q n \vec{E} - k_{\rm B} T \nabla n_{\rm e} ) \\ &= \frac{q}{m_{\rm e} \nu_{\rm ei}} \vec{E} - \frac{k_{\rm B} T}{m_{\rm e} \nu_{\rm ei}} \frac{\nabla n}{n} \\ &= \mu \vec{E} - D \frac{\nabla n}{n}\end{aligned}\end{split}\\where :math:`\mu` is the mobility coefficient, and :math:`D` the\end{aligned}\end{align} \]

diffusion coefficient. These differ for each species.

The flux, \(\vec{\Gamma}\), is

\[ \begin{align}\begin{aligned}\vec{\Gamma} = n \cdot \vec{v} = \pm \mu n\vec{E} - D \nabla n\\if either there is no :math:`\vec{E}`-field, or the particles are\end{aligned}\end{align} \]

uncharged we find Fick’s Law,

\[ \begin{align}\begin{aligned} \label{eq:26} \vec{\Gamma} = -D \nabla n\\From the continuity equation,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\pdv{n}{t} + \nabla \cdot \vec{\Gamma} = 0\\we can construct the diffusion equation,\end{aligned}\end{align} \]
\[\label{eq:27} \pdv{n}{t} - \nabla D \nabla n = 0\]

Ambipolar Diffusion

A plasma should be quasi-neutral, so diffusion of electrons and ions should adjust to some degree to preserve quasineutrality. The fast-moving electrons have higher thermal velocities and tend to leave a plasma first. The positive charge is then left behind, and an electric field is setup to retard the loss of electrons, and accelerate the loss of ions. We let \(\vec{\Gamma}_{\rm e} = \vec{\Gamma}_{\rm i} = \vec{\Gamma}\), so

\[ \begin{align}\begin{aligned} \vec{\Gamma} = \mu_{\rm i} n \vec{E} - D_{\rm i} \nabla n = \mu_{\rm e} n \vec{E} - D_{\rm e} \nabla n\\and solving for :math:`\vec{E}` we find\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \vec{E} = \frac{D_{\rm i} - D_{\rm e}}{\mu_{\rm i} + \mu_{\rm e}} \frac{\nabla n}{n}\\and the total flux is\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \vec{\Gamma} = \mu_{\rm i} n \frac{D_{\rm i} - D_{\rm e}}{\mu_{\rm i}+\mu_{\rm e}} \frac{\nabla n}{n} - D_{\rm i} \nabla n = - \frac{\mu_{\rm i} D_{\rm e} + \mu_{\rm e} D_{\rm i}}{\mu_{\rm i} + \mu_{\rm e}} \nabla n\\Which is just Fick’s law again, with an additional coefficient,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} D_{\rm a} = \frac{\mu_{\rm i} D_{\rm e} + \mu_{\rm e}D_{\rm i}}{\mu_{\rm i} + \mu_{\rm e}}\\which is the ambipolar diffusion coefficient.\end{aligned}\end{align} \]

Kinetic Theory of Plasmas

There are some phenomena which neither MHD nor single-particle descriptions of a plasma can describe. For these situations we need to consider the velocity distribution, \(f(\vec{v})\) of the plasma. In fluid theory the independent variables are functions of \(\vec{r}\) and \(t\) only, which is because the velocity distribution is taken to be Maxwellian everywhere, so can be uniquely speciied by the temperature, \(T\), and the number density, \(n(\vec{r}, t)\),

\[n(\vec{r}, t) = \int f(\vec{r}, \vec{v}, t) \d[3]{V} = \int f(\vec{r}, \vec{v}, t) \dd[3]{V}\]

If \(f\) is correctly normalised it describes the probbaility of finding a particle in the range \(\vec{r} \in (\vec{r}, \vec{r}+\dd{\vec{r}})\) and \(\vec{v} \in (\vec{v}, \vec{v}+\dd{\vec{v}})\). \(f\) is a function in seven variables, and, if it is a Maxwellian distribution, it has the form,

\[ \begin{align}\begin{aligned} \label{eq:28} f(\vec{r}, \vec{v}, t) = n(\vec{r}, t) \frac{m}{(2 \pi k T)^{\frac{3}{2}}} \exp( - \frac{v^2}{v_{\rm th}^2})\\for\end{aligned}\end{align} \]
\[v_{\rm th} = \qty(\frac{2kT}{m})^{\half}\]

Ignoring collisions, and assuming the plasma to be a closed system, with no sources or sinks of particles, the function will obey the Liouville theorem, so

\[\dv{f}{t} = 0\]

for the time derivative along a trajectory in \((\vec{r}, \vec{v})\)-phase space, so

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \dv{f}{t} = \pdv{f}{t} + \dv{\vec{r}}{t} \pdv{f}{\vec{r}} + \dv{\vec{v}}{t} \pdv{f}{\vec{v}} &= 0 \\ \pdv{f}{t} + \vec{v} \pdv{f}{\vec{r}} + \frac{\vec{F}}{m} \pdv{f}{\vec{v}} &= 0\end{aligned}\end{split}\\which is the kinetic equation for the plasma. If the force is entirely\end{aligned}\end{align} \]

electromagnetic the equation takes the form

\[ \begin{align}\begin{aligned} \label{eq:29} \pdv{f}{t} + \vec{v} \pdv{f}{\vec{r}} + \frac{q}{m} \qty( \vec{E} + \vec{v} \times \vec{B}) \pdv{f}{\vec{v}} = 0\\which is the Vlasov equation. This should be completed with the system\end{aligned}\end{align} \]

of Maxwell’s equations, as \(\vec{E}\) and \(\vec{B}\) are the average values of the electric and magnetic fields from particles in the plasma.

If there are collisions in the plasma, \(\dv{f}{t}\neq 0\), and, using the collision integral,

\[ \begin{align}\begin{aligned} \label{eq:30} \pdv{f}{t} + \vec{v} \pdv{f}{\vec{r}} + \frac{\vec{F}}{m} \pdv{f}{\vec{v}} = \qty( \pdv{f}{t} )_{\rm coll}\\which is the Boltzmann equation. The kinetic equation can be modified\end{aligned}\end{align} \]

to include sources or sinks of particles by adding terms on the right hand side.

The collision term can sometimes be approximated as

\[ \begin{align}\begin{aligned}\qty( \pdv{f}{t} )_{\rm coll} = \frac{f_{\rm eq} - f}{\tau}\\where :math:`f_{\rm eq}` is the equilibrium function, and :math:`\tau`\end{aligned}\end{align} \]

is the collision time. This is the Krook collision term.

Plasma waves and Landau Damping

As an illustration of the use of the Vlasov equation, we consider the electron plasma oscillations in a uniform plasma with no applied magnetic or electric fields. Consider a first order perturbation,

\[ \begin{align}\begin{aligned} f(\vec{r}, \vec{v}, t) = f_0(\vec{r}, \vec{v}, t) + f_1(\vec{r}, \vec{v}, t)\\the first order Vlasov equation for electrons is\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \pdv{f_1}{t} + \vec{v} \nabla f_1 = \frac{e}{m} \vec{E}_1 \pdv{f_0}{\vec{v}} =0\\where :math:`E_1` is a perturbation of the electric field. Using\end{aligned}\end{align} \]

Poisson’s equation (\(\epsilon_0 \nabla \vec{E} = \rho\)),

\[ \begin{align}\begin{aligned}\epsilon_0 \nabla \vec{E}_1 = -e n_1 = -e \int f_1 \dd[3]{V}\\As before assume the ions are massive and immobile, and assume the\end{aligned}\end{align} \]

waves in the plasma are plane waves in the \(x\)-direction. Then,

\[f_1 = f_0 \exp(- i \omega t + i k x)\]
\[ \begin{align}\begin{aligned}E_1 = E_x \exp( - i \omega t + i k x)\\Then we can write\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}- i \omega f_1 + i k v_x f_1 = \frac{e}{m} E_x \pdv{f_0}{v_x}\\from the Vlasov equation, and\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\epsilon_0 i k E_x = - \int f_1 \dd[3]{V}\\from Poisson’s equation. Combining the two,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} 1 & = - \frac{e^2 }{l m \epsilon_0} \int \frac{\pdv{f_0}{v_x}}{\omega- k v_x} \dd[3]{V} \\ &= - \frac{e^2}{k m \epsilon_0} \int_{-\infty}^{\infty} \dd{v_z} \int_{-\infty}^{\infty} \dd{v_y} \int \frac{\pdv{f_0}{v_x}}{\omega- k v_x} \dd{v_x}\end{aligned}\end{split}\\If :math:`f_0` is Maxwellian the integration over :math:`v_y` and\end{aligned}\end{align} \]

\(v_z\) can be carried out, and

\[ \begin{align}\begin{aligned} f_0(v_x) = n_0 \frac{m}{(2 \pi k_{\rm B} T)^{\half}} \exp( - \frac{m v_x^2}{2 k_{\rm B} T} )\\Taking the normalised function :math:`\tilde{f} = \frac{f_0}{n_0}`,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} 1 = \frac{\omega_{\rm pe}^2}{k^2} \int_{-\infty}^{\infty} \frac{\pdv{\tilde{f}_0}{v_x}}{v_x - \frac{\omega}{k}} \dd{v_x}\\This integral is non-trivial to compute, due to the singularity at\end{aligned}\end{align} \]

\(v_x = \frac{\omega}{k}\). Landau suggested (1946) letting \(\omega \to \omega + i o\) for a small \(o\), which makes the integral

\[ \begin{align}\begin{aligned} \int_{-\infty}^{\infty} \frac{y(z)}{z-io} \dd{z} = P \int_{-\infty}^{\infty} \frac{f(z)}{z} \dd{z} + i \pi f(0)\\where :math:`P` denotes the Cauchy principle value of the integral.\end{aligned}\end{align} \]

This can be written symbolically as

\[ \begin{align}\begin{aligned}\frac{1}{z-io} = P \frac{1}{z} + i \pi \delta(z)\\and then, using the Landau rule, and letting :math:`v := v_x`,\end{aligned}\end{align} \]
\[\label{eq:31} 1 = \frac{\omega_{\rm pe}^2}{k^2} \qty[ P \int_{-\infty}^{\infty} \frac{\pdv*{\tilde{f}_0}{v}}{v - \frac{\omega}{k}} + i\eval{\pi \pdv{\tilde{f}_0}{v} }_{v = \frac{\omega}{k}}]\]

First, concentrate on the real part, where the integral can be computed by integrating by parts,

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \int_{-\infty}^{\infty} \pdv{\tilde{f}_0}{v} \frac{\dd{v}}{v - \frac{\omega}{k}} &= \eval{\frac{\tilde{f}_0 \dd{v}}{(v - \frac{\omega}{k})^2}}_{-\infty}^{\infty} - \int - \frac{\tilde{f}_0 \dd{v}}{\qty(v - \frac{\omega}{k})^2} \\ &= \int_{-\infty}^{\infty} \frac{\tilde{f}_0 \dd{v}}{\qty( v - \frac{\omega}{k})^2}\end{aligned}\end{split}\\We can assume :math:`\frac{\omega}{k} \gg v` (i.e. large phase\end{aligned}\end{align} \]

velocities), and so we can expand \((v - \frac{\omega}{k})^{-2}\),

\[\begin{split}\begin{aligned} (v - \frac{\omega}{k})^{-2} &= \qty( \frac{\omega}{k} )^{-2} \qty( 1 - \frac{v k}{\omega})^{-2} \\ &= \qty( \frac{\omega}{k} )^{-2} \qty( 1 + \frac{2 v k}{\omega} + \frac{3(vk)^2}{\omega^2} + \cdots )\end{aligned}\end{split}\]

And now, using the expansion for the integral,

\[ \begin{align}\begin{aligned} \begin{aligned} \int_{-\infty}^{\infty} \frac{\tilde{f}_0 \dd{v}}{\qty( v - \frac{\omega}{k})^2} &= \qty( \frac{\omega}{k} )^{-2} \int_{- \infty}^{\infty} \qty( 1 + \frac{2 v k}{\omega} + \frac{3(vk)^2}{\omega^2} + \cdots ) \tilde{f}_0 \dd{v}\end{aligned}\\The odd terms in :math:`v` will vanish, and\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\int_{-\infty}^{\infty} v^2 \tilde{f}_0 \dd{v}\\is just an average, so assuming :math:`\tilde{f}_0` is Maxwellian,\end{aligned}\end{align} \]
\[\int_{-\infty}^{\infty} v^2 \tilde{f}_0 \dd{v} = \frac{k_{\rm B}T_{\rm e}}{m}\]

Then we can write

\[ \begin{align}\begin{aligned}1 = \frac{\omega_{\rm pe}^2}{k^2} \qty[ \qty(\frac{\omega}{k})^{-2} \qty(1+ \frac{3 k_{\rm B} T_{\rm e} k^2}{m \omega^2})] = \frac{\omega_{\rm pe}^2}{\omega^2} \qty( 1+ \frac{3 k_{\rm B} T_{\rm e} k^2}{m \omega^2} )\\If the thermal correction is small we can replace :math:`\omega^2` with\end{aligned}\end{align} \]

\(\omega_{\rm pe}^2\) in the second term, so

\[ \begin{align}\begin{aligned} \label{eq:32} \omega^2(k) \approx \omega_{\rm pe}^2 + \frac{3 k_{\rm B} T_{\rm e}}{m} k^2\\This is the dispertion relation for Langmuir waves. The phase speed is\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}v_{\rm p} = \frac{\omega}{k} \approx \frac{\omega_{\rm pe}}{k}\\and the group velocity is\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} v_{\rm g} = \pdv{\omega}{k} \approx \frac{3 k_{\rm B} T_{\rm e}}{m} k\\(assuming that :math:`\omega(k) \approx \omega_{\rm pe} + \frac{3}{2}\end{aligned}\end{align} \]

frac{k_{rm B} T_{rm e}}{m} frac{k^2}{omega_{rm pe}}`). Then, the group velocity is

\[v_{\rm g} \approx 3 \frac{k_{\rm B}T_{\rm e}}{m} \frac{k}{\omega_{\rm pe}} \approx 3 \frac{k_{\rm B} T_{\rm e}}{m} \frac{1}{v_{\rm p}} \approx 3 \frac{v_{\rm Te}^2}{v_{\rm p}}\]

Finally, the imaginary part. For simplicity ignore the thermal correction, so \(\omega(k) \approx \omega_{\rm pe}\), then

\[ \begin{align}\begin{aligned} 1 = \frac{\omega_{\rm pe}^2}{\omega^2} + i \pi \frac{\omega_{\rm pe}^2}{k^2} \eval{\pdv{\tilde{f}_0}{v}}_{v=\frac{\omega}{k}}\\and so\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \omega^2 = \omega_{\rm pe} \qty( 1 - i \pi \frac{\omega_{\rm pe}^2}{k^2} \eval{ \pdv{\tilde{f}_0}{v} }_{v=\frac{\omega}{k}} )^{-1}\\Then, assuming that the imaginary part is small,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:33} \omega(k) = \omega_{\rm pe} + i \omega_{\rm pe} \frac{\pi}{2} \frac{\omega_{\rm pe}^2}{k} \eval{\pdv{\tilde{f}_0}{v}}_{v = \frac{\omega}{k}}\\which is Landau damping. Substituting the one-dimensional Maxwellian\end{aligned}\end{align} \]

distribution for \(\tilde{f}\),

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \pdv{\tilde{f}}{v} &= \qty( \pi v_{\rm Th}^2 )^{- \half} \exp( - \frac{v^2}{v_{\rm Th}^2}) \qty( - \frac{2v}{v_{\rm Th}^2}) \\ &\approx - \frac{2v}{\sqrt{\pi} v_{\rm Th}^3} \exp( - \frac{v^2}{v_{\rm Th}^2} ) \end{aligned}\end{split}\\The using the knowledge that :math:`v= \frac{\omega}{k} \approx\end{aligned}\end{align} \]

frac{omega_{rm pe}}{k}`,

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \gamma_k = \Im(\omega) &= - \frac{\pi}{2} \frac{\omega_{\rm pe}^3}{k^2} \frac{2 \omega_{\rm pe}}{k \sqrt{\pi}} \frac{1}{v_{\rm Th}^3} \exp( - \frac{\omega_{\rm pe}^2}{k^2 v_{\rm Th}^2} ) \nonumber\\ &= - \sqrt{\pi} \omega_{\rm p} \qty( \frac{\omega_{\rm pe}}{k v_{\rm Th}})^3 \exp( - \frac{\omega_{\rm pe}}{k^2 v_{\rm Th}^2})\end{aligned}\end{split}\\Which is Landau damping. A useful equation derived from this is then\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:34} \Im\qty(\frac{\omega}{\omega_{\rm pe}}) \approx -0.22 \sqrt{\pi} \qty( \frac{\omega_{\rm pe}}{k v_{\rm Th}})^3 \exp(- \frac{1}{2k^2 \lambda^2_{\rm De}} )\\The discovery of wave damping without collisional dissipation has been\end{aligned}\end{align} \]

described as “probably the most astounding result of plasma physics.”

The damping is not reandomisation by collisions, but a resonant (i.e.phase velocity of waves is the same as the velocity of interacting particles) \(v=\frac{\omega}{k}\) transfer of energy from waves to particles. It can be reversed if \(\pdv*{\tilde{f}_0}{v}>0\).

Plasma and Radiation

Plasma Radiation

in 0,30,…,360 (B) (0,0)+(:7); (0,0) +(:7) – +(:10); (0,0) circle (7);

(0,0) circle (5); in 0,30,…,360 (2,0) – (:5) coordinate (A);

(0,0) node [fill=accent-blue, circle] 1; (2,0) node [fill=accent-green, circle] 2;

in 0,30,…,360 (0,0)+(:5) – +(:7);

(0,.6) – (2,.6) node [above, midway] \(\Delta v \ t\);

(0,-.6) – (-5,-.6) node [fill=white, midway] \(r = ct\); (-170:5) – (-170:7) node [below, yshift=-.1cm, midway] \(r^{\prime} = c \Delta t\);

Charged particles will emit electromagnetic radiation if they accelerate during their motion. An example of accelerated motion in a plasma is the gyromotion of particles; radiation from the gyromotion is generally called synchotron radiation. Extagalactic jets, solar flares, and supernova remnants all show this behaviour.
To understand how this radiation is produced, consider a charge, \(q\) at a time \(t=0\), which is stationary at the origin of a laboratory rest frame. The electric field of the charge can be visualised as lines radiating from the charge. Now, let the particle accelerate to \(\Delta \vec{v}\) in a time \(\Delta t\). We assume that \(\abs{ \Delta \vec{v} } \ll c\), so that relativistic corrections are small. After the acceleration the field of the particle will be radial about its new location. This field extends a distance of \(r = ct\) from the new location of the charge. The old field will continue to exist in the region \(r> c(t + \Delta t)\). In the region between these two there is a thin shell, with thickness \(c \Delta t\) where the field lines from the before and after cases must join up. As a result there must be a non-radial component of \(\vec{E}\) in this region, and this constitutes a propogating pulse of electromagnetic field.
The electric field lines are radial at \(t=0\) and \(t=T\), but they have different origins. The lines joining the old and new field lines have a non-radial electric field component, \(\vec{E}_{\phi}\), in addition to the radial component \(\vec{E}_{r}\).

The radial component has the usual form,

\[\vec{E}_r = \frac{q}{4 \pi \epsilon_0} \frac{\vec{r}}{r^2}\]

while the \(\vec{E}_{\phi}\) component is given by the number of radial field-lines per unit area in the direction of \(\vec{\phi}\). From geometry arguments,

\[ \begin{align}\begin{aligned} \label{eq:9} \frac{E_{\phi}}{E_r} = \frac{\Delta v t \sin(\phi)}{c \Delta t}\\then, since :math:`t = \frac{r}{c}`,\end{aligned}\end{align} \]

\(\frac{\Delta v}{\Delta t} = \ddot{r}\), and substituting \(\vec{E}_r\),

\[ \begin{align}\begin{aligned} \label{eq:10} E_{\phi} = \ddot{r} \sin(\phi) \frac{q}{4 \pi \epsilon_0} \frac{1}{c^2 r}\\:math:`\vec{E}_{\phi}` is known as the *acceleration field*, and has a\end{aligned}\end{align} \]

strength varying with \(\frac{1}{r}\), in contrast to the radial field which varies with \(\frac{1}{r}\). This “kink” is an outward moving pulse of electromagnetic radiation. The power per unit area per second is given by the Poynting vector,

\[ \begin{align}\begin{aligned} \vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0} = c \epsilon_0 E^2 \hat{r}\\The total energy radiated per second then becomes\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} P(t) = \int \vec{S} \cdot \dd{\vec{A}} = \int \vec{S} r^2 \dd{\vec{\Omega}}\\Recalling that for a sphere,\end{aligned}\end{align} \]

\(\dd{\Omega} = 2 \pi \sin(\phi) \dd{\phi}\),

\[ \begin{align}\begin{aligned} \label{eq:11} P(t) = \frac{q^2 |\ddot{r}|^2}{6 \pi \epsilon_0 c^3}\\which is Larmour’s formula. This is a general expression for the\end{aligned}\end{align} \]

radiated power from an accelerated charge, and can be applied to our specific case of a particle gyrating in an electric field.

Cyclotron Radiation

Consider the rest frame of a charge \(q\), called \(S^{\prime}\), and a lab frame \(S\).

\[\text{In the $S$ frame} \quad m \dv{\vec{v}}{t} = q \vec{v} \times \vec{B}\]
\[ \begin{align}\begin{aligned} \text{In the $S^{\prime}$ frame} \quad m \dv{\vec{v}^{\prime}}{t^{\prime}} = q \vec{B}^{\prime}\\The electric field :math:`E^{\prime} = v \gamma B \sin(\theta)` (with\end{aligned}\end{align} \]

\(\theta\) the electron pitch angle) due to the relativistic transformations of \(\vec{E}\) and \(\vec{B}\). Using Larmour’s formula,

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} P(t)^{\prime} &= \frac{q^2 \abs{\dot{v}^{\prime}}^2}{6 \pi \epsilon_0 c^3}\\ &= \frac{q^2}{6 \pi \epsilon_0 c^3} \frac{q^2}{m^2} \abs{\vec{B}^{\prime}}^2 \\ &= \frac{q^4}{6 \pi \epsilon_0 c^3 m^2} (v \gamma B)^2 \sin[2](\theta)\end{aligned}\end{split}\\This gives the power radiated in the rest frame of the electron. Power\end{aligned}\end{align} \]

is Lorentz invariant (\(P = P^{\prime}\)), so the power in the lab frame must be the same. The total power radiated in the lab frame from a particle with pitch anfgle \(\theta\) is

\[ \begin{align}\begin{aligned} P = \frac{q^4 B^2}{6 \pi \epsilon_0 c m^2} \gamma^2 \beta \sin[2](\theta)\\for :math:`\beta = \frac{v}{c}`. and simplifying,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}P = 2 \sigma_{\rm T} c U_{\rm mag} \gamma^2 \sin[2](\theta)\\with :math:`\sigma_{\rm T}` the Thomson cross-section,\end{aligned}\end{align} \]

\(U_{\rm mag} = \frac{B^2}{2 \mu_0}\).

The distribution of the radiation about the moving charge is worth considering;

\[ \begin{align}\begin{aligned} \label{eq:12} \dv{P}{\Omega} = c \epsilon_0 \frac{q^2}{(4 \pi \epsilon_0)^2} \frac{(\ddot{r})^2}{c^4} \sin[2](\phi)\\this is a dipole emission pattern.\end{aligned}\end{align} \]

If the particle is relativistic we must consider the effect on the cyclotron frequency. The relativistic frequency will be

\[\omega_{\rm r} = \frac{\omega_{\rm c}}{\gamma} = \frac{\abs{q}B}{\gamma m_0}\]

where \(m_0\) is the rest-mass of the particle. This can be decomposed into a series of harmonics, \(\omega_n\),

\[ \begin{align}\begin{aligned} \omega_n = \frac{n \omega_{\rm r}}{\qty(1 - \beta_{\parallel} \cos(\theta) )}\\As a result, the spectrum of highly relativistic electrons will be\end{aligned}\end{align} \]

distinctly different from the delta-function peak we expect from a non-relativistic charge. A distribution of electrons will in fact display a power-law spectrum. As the charge becomes more relativistic the dipole shape of the radiation is deformed, and an effect known as “relativistic beaming” will be observed, with the output of radiation becoming more and more focussed.

Faraday Rotation in a Cold Plasma

Parallel to a uniform magnetic field, \(\vec{B}_0\) there are two electromagnetic modes (cold plasma modes), where
\[n^2 = R \qquad n^2 = L \quad L \neq R\]

thus different polarisations have different phase speeds—we can exploit this as a remote diagnostic of the plasma conditions.

Consider two circuarly polarised modes, \(n^2 = \{R, L \}\), then
\[n^2 = \frac{k^2 c^2}{\omega^2}\]

Thus it is possible to convert between \(n\) and \(\frac{\omega}{k}\). A superposition of the circuarly polarised waves produces an evolution along the propogation ray of the net \(\vec{E}\) polarisation direction.

(0,-4.4) – (7,-4.4) node [midway, below] \(z\);

(0,0) circle (2); (0,-2) – (0,2) node [midway, right, black] \(\vec{E}\); (2,4) node [text width=3cm, left, text ragged] At \(z=0\) \(R\) and \(L\) are synchronised, producing a vertical polarisation.; (-1,-3) circle (.8) node \(R\); (1,-3) circle (.8) node \(L\); (-1,-2.2) circle (0.1); (1,-2.2) circle (0.1); (-1,-2) arc (90:135:1); (1,-2) arc (270:225:-1);

(0,4) node [text width=3cm, text ragged] As \(z\) increases, \(R\) and \(L\) the faster rotation of the \(L\) mode causes the polarisation to become diagonal.; (0,0) circle (2); (0,-2) – (0,2) node [midway, right, black] \(\vec{E}\);

(-1,-3) circle (.8) node \(R\); (1,-3) circle (.8) node \(L\); (-1,-2.2) circle (0.1); (1,-2.2) circle (0.1); (-1,-2) arc (90:135:1); (1,-2) arc (270:225:-1);

Suppose the polarisation vector \(\vec{E}\) shifts by an angle \(\dd{\theta}\) as a result of the varying phase interference of the superposed \(R\) and \(L\) modes. Then,

\[\dd{\theta} = \frac{1}{2} (k_L - k_R) \dd{z}\]
Considering the special case of an electron plasma, with \(\omega \gg \omega_{\rm c_e}\), we can see that \(n^2 = \{R,L\}\) are
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} R & = 1 - \frac{\omega_{\rm p}^2}{\omega(\omega-\omega_{\rm c_e})} \\ L & = 1 - \frac{\omega_{\rm p}^2}{\omega(\omega+\omega_{\rm c_e})}\end{aligned}\end{split}\\with :math:`\omega_{\rm c_+} \to 0`, as :math:`m_+ \to \infty`. Thus\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \eval{n}_{\rm RCP} &\approx 1 - \frac{\omega_{\rm p}^2}{2 \omega (\omega-\omega_{\rm c_e})} \\ \eval{n}_{\rm LCP} &\approx 1 - \frac{\omega_{\rm p}^2}{2 \omega(\omega+\omega_{\rm c_e})}\end{aligned}\end{split}\\Then\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} (n_R - n_L) &= \frac{\omega_{\rm p}^2}{2 \omega} \qty[ \frac{1}{\omega - \omega_{\rm c_e}} - \frac{1}{\omega(\omega+\omega_{\rm c_e})}]\\ &= \frac{\omega_{\rm p}^2}{2 \omega} \frac{\omega + \omega_{\rm c_e}-(\omega-\omega_{\rm c_e})}{\omega^2 - \omega_{\rm c_e}^2} \\ &= \frac{\omega_{\rm p}^2 \omega_{\rm c_e}}{\omega(\omega^2-\omega_{\rm c_e}^2)} \\ &\approx \frac{\omega_{\rm p}^2 \omega_{\rm c_e}}{\omega^3} \\\end{aligned}\end{split}\\Hence,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \dd{\theta} &= \half \qty| (k_R - k_L)| \dd{z} \\ & \approx \half \int_0^2 \frac{\omega_{\rm p}^2 \omega_{\rm c_e} \dd{z}}{c \omega^2} \\ &= \half \int_0^2 \frac{ \frac{ne^2}{m_{\rm e}^2} \frac{eB}{m_{\rm e}}}{ c \omega^2} \dd{z}\\ &= \frac{e^2}{2 \epsilon_0 m_{\rm e}^2 c \omega^2} \int_0^2 nB \dd{z}\end{aligned}\end{split}\\We could allow :math:`n` and :math:`B` to vary slowly, i.e. with the\end{aligned}\end{align} \]

gradient-scale length of \(n,B\) much greater than the wavelength of the circular poalrisation modes, and still have a Faraday rotation result which is reasonably slow.

When observing the wave we can only make a detection at one point in the propogation path, but using the frequency dependence we can detect polarisation variation by measuring the polarisation at multiple frequencies.
Using Faraday rotation allows the measurement of \(\int nB \dd{z}\) along the line-of-sight path as a function of frequency. Suppose we have a system with a plasma between the observer and a multispectral event. We set off a flash which travels through the plasma, and observe the radiation on the far side. Plasma slows different frequencies to a different degree, so the time elapsed between different frequencies allows the line-of-sight integrated number density to be found, which in turn allows the integrated line-of-sight magnetic field to be found, which can be used to make maps of magnetic fields.

We can generalise this result, with

\[ \begin{align}\begin{aligned} \label{eq:faradayangle} \theta_{\rm F} = \frac{1}{\omega^2} \frac{e^3}{2 \epsilon_0 m_{\rm e}^2 c} \int_0^z n B \cos \theta \dd{z'}\\with :math:`\theta_{\rm F}` being the angle between the full magnetic\end{aligned}\end{align} \]

field direction and the line-of-sight direction.

For a cold plasma we have the dispertion relation in equation ([eq:dispertion]), for a wave with \(\omega \gg \omega_{\rm p}\) and \(\omega \gg \omega_{\rm ci}\),
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} S &= \half \qty( 1 + \frac{\omega_{\rm p}^2}{(\omega + \omega_{\rm ci})(\omega_{\rm ei}-\omega)} + 1 - \frac{\omega_{\rm p}^2}{(\omega - \omega_{\rm ei})(\omega+\omega_{\rm ce})}) \\ &= \half \qty( 2+ \omega_{\rm p}^2 \frac{(\omega-\omega_{\rm ci})(\omega+\omega_{\rm ce}) - (\omega+\omega_{\rm ci})(\omega_{\rm ce}-\omega)}{(\omega^2-\omega_{\rm ci}^2)(\omega_{\rm ce}^2 - \omega^2)}) \\ &= \half \qty( 2+ \omega_{\rm p}^2 \frac{\omega \qty(\omega+\omega_{\rm ce} - (\omega_{\rm ce}-\omega))}{\omega^2(\omega_{\rm ce}^2 - \omega^2)})\\ &= \half \qty( 2+ \omega_{\rm p}^2 \frac{2 \omega^2}{\omega^2 \qty(\omega_{\rm ce}^2 - \omega^2)} )\\ &= \half \qty( 2+ \omega_{\rm p}^2 \frac{2 \omega^2}{\omega^2 \qty(\omega^2_{\rm ce} - \omega^2)}) \\ &= 1 + \frac{\omega_{\rm p}^2}{\qty( \omega_{\rm ce}^2 - \omega^2)}\end{aligned}\end{split}\\Now introducing :math:`\Gamma_{\rm p} := \frac{\omega_{\rm p}^2}{\omega^2_{\rm ce} - \omega^2}`, finally,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} S &= \half (R+L) = 1+r_{\rm p}\\ D &= \half (R-L) = r_{\rm p} \frac{\omega_{\rm ce}}{\omega}\\ P &= 1 - \frac{\omega_{\rm p}^2}{\omega^2} \approx S\end{aligned}\end{split}\\In the limit :math:`\omega \gg \omega_{\rm ce}`. The general cold\end{aligned}\end{align} \]

plasma dispertion relation is equation ([eq:dispertionrelation]), which can be solved for \(n^2\),

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} n^2 &= \frac{2 PS +(RL-PS)(\sin[2](\theta)) \pm \sqrt{(RL-PS)^2 \sin[4](\theta)} }{{2 \qty[ P+(S-P) \sin[2](\theta)]}} \\& \quad+ \frac{{4 P^2D^2 \cos[2](\theta)}}{2 \qty[ P+(S-P) \sin[2](\theta)]} \end{aligned}\end{split}\\In the limit :math:`\omega \gg \omega_{\rm ce}`, :math:`P \approx S`\end{aligned}\end{align} \]

and

\[ \begin{align}\begin{aligned}RL - PS \approx RL -S^2 = -D^2\\hence\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \begin{aligned} n_{\pm}^2 &= \frac{2 S^2 - D^2 \sin[2](\theta) \pm \sqrt{D^4 \sin[4](\theta) + 4 S^2 D^2 \cos[2](\theta)}}{2S}\end{aligned}\\where the :math:`\pm` corresponds to the right and left polarisations\end{aligned}\end{align} \]

respectively. We can further simplify for small angles of wave propogation, so \(\cos(\theta)\approx 1\) and \(v \approx 0\).

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} n_{\pm}^2 &\approx S \pm D \cos(\theta) \\ & \approx 1 + r_{\rm p} \pm r_{\rm p} \frac{\omega_{\rm ce}}{\omega} \cos(\theta) \\ & \approx \frac{\omega_{\rm ce}^2 - \omega^2 + \omega_{\rm p}^2}{\omega_{\rm ce}^2 - \omega^2} \pm \frac{\omega_{\rm p}^2}{\omega_{\rm ce}^2 -\omega^2} \frac{\omega_{\rm ce}}{\omega} \cos(\theta) \\ & \approx 1 \mp \frac{\omega_{\rm p}^2 \omega_{\rm ce}}{\omega^3} \cos(\theta)\end{aligned}\end{split}\\For :math:`\omega^2 \gg \omega_{\rm p}^2`,\end{aligned}\end{align} \]

\(\omega^2 \gg \omega_{\rm ce}^2\). Then

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} n_+ & \approx \qty( 1 - \frac{\omega_{\rm p}^2 \omega_{\rm ce}}{\omega^3} \cos(\theta))^{\half} \approx 1 - \frac{\omega_{\rm p}^2 \omega_{\rm ce}}{2 \omega^3 \cos(\theta)} \\ n_- & \approx \qty( 1+ \frac{\omega_{\rm p}^2 \omega_{\rm ce}}{\omega^3} \cos(\theta) )^{\half} \approx 1 + \frac{\omega_{\rm p}^2 \omega_{\rm ce}}{2 \omega^3} \cos(\theta)\end{aligned}\end{split}\\And so,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\Delta n = n_- - n_+ \approx \frac{\omega_{\rm p}^2 \omega_{\rm ce}}{\omega^3} \cos(\theta)\\Since :math:`n = \frac{kc}{\omega}`, we know\end{aligned}\end{align} \]

\(k = \frac{\omega}{c} n\), and so

\[ \begin{align}\begin{aligned} \begin{aligned} K_- - K_+ \approx \frac{\omega_{\rm p}^2 \omega_{\rm ce}}{c \omega^2} \cos(\theta) \end{aligned}\\and so finally, the rotation angle is\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned} \label{eq:13} \dd{\phi} = \half \frac{\omega_{\rm p}^2 \omega_{\rm ce}}{c \omega^2} \cos(\theta) \dd{z}\\At the high wave frequency limit,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\omega = k c = \frac{2 \pi c}{\lambda}\\Hence, as :math:`\omega_{\rm p}\end{aligned}\end{align} \]

= sqrt{frac{4 pi e^2 n_{rm e}}{4 pi m epsilon_0}}`, and \(\omega_{\rm c} = \frac{eB}{m}\),

\[ \begin{align}\begin{aligned}\begin{split} \begin{aligned} \dv{\phi}{z} &= \half \frac{e^2 n }{m \epsilon_0} \frac{eB}{m} \frac{1 \lambda^2}{c (2 \pi)^2 c^2} \cos(\theta) \\ &= \frac{e^3 B n_{\rm e} \lambda^2}{8 \pi^2 m^2 \epsilon_0 c^3} \cos(\theta)\end{aligned}\end{split}\\And then, to find the Farday angle after the radiation has travelled\end{aligned}\end{align} \]

along a path \(r\),

\[ \begin{align}\begin{aligned} \label{eq:14} \phi_{\rm F} = \frac{e^3 \lambda^2}{8 \pi^2 m^2 \epsilon_0 c^3} \int_0^r B(z) n_{\rm e}(z) \cos(\theta) \dd{z}\\Assuming a uniform number density the Faraday rotation is a measure\end{aligned}\end{align} \]

of the magnetic field along the path.

Faraday rotation occurs because light which is polarised in the direction of electron gyration has a higher phase speed than that which is polarised in the opposing direction. The rotation is higher for low-frequency waves.
1

Air generally has around \(10^{9} {\rm m}^{-3}\) ions and electrons which are caused by background sources and friction. These can be harnassed as seeds for further ionisation.