***************************** Non-inertial reference frames ***************************** .. math:: \def\dd#1{\,\text{d}} \def\ddt#1{\frac{\text{d} #1}{\text{d}t}} \def\ddf#1#2{\frac{\text{d} #1}{\text{d} #2}} \def\dddf#1#2#3{\frac{\text{d}^{#3} #1}{\text{d} #2^{#3}}} \def\cp{\times} Rotating Frames =============== Consider a frame :math:`S_1` which is rotating with angular velocity, :math:`\omega`, about its :math:`z`-axis with respect to an inertial frame, :math:`S_0`, such that the axes coincide when :math:`t=0`. As such there will be an angle between the sympathetic axes of :math:`\theta = \omega t` at any given time. Now consider a vector :math:`\vec{A}_1` in :math:`S_1` which becomes .. math:: A_0 = {\mathsf{R}}(\omega t) \vec{A}_1 i.e. :math:`\vec{A}` as seen in :math:`S_0` rotates about the :math:`z` axis, corresponding to the rotation of the :math:`S_1` axes. The explicit form of :math:`{\mathsf{R}}(\theta)` is then .. math:: {\mathsf{R}} = \begin{bmatrix} \cos(\omega t) & - \sin(\omega t) & 0 \\ \sin(\omega t) & \cos(\omega t) & 0 \\ 0 & 0 & 1 \end{bmatrix} In general :math:`A_1` may vary with :math:`t`, i.e. :math:`A_1` is not fixed in :math:`S_1`. Its rate of change in :math:`S_1` is not simply given by :math:`A_1`. This seems confusing at first but due to the fact that both the vector and the coordinate axes in :math:`S_1` are changing with time. For example, a fixed vector in :math:`S_1` has :math:`\dot{A}_1=0` but :math:`\dot{A}_0 \neq 0`. The rate of change of the axes introduces an additional term to velocities in :math:`S_0`; letting .. math:: \begin{aligned} \dd{\vec{A}_0} &= \mathop{{\left[ \df{{\mathsf{R}}}(\omega t) \right] \vec{A}_1}}\limits_{\text{From axis rotation.}} + {\mathsf{R}}(\omega t) \dd{\vec{A}_1} \\ &= \vec{\omega} \cp \vec{A}_0 \dd{t} + {\mathsf{R}}(\omega t) \dd{A_1} \\ &= \vec{\omega} \cp \left[ {\mathsf{R}}(\omega t) \vec{A}_1 \right] \dd{t} + {\mathsf{R}}(\omega t) \dd{A_1} \end{aligned} Since .. math:: \left| \dd{{\mathsf{R}}} \vec{A}_1 \right| = \omega \dd{t} \left| \vec{A}_0(\omega t) \right| = \left| \omega \cp \vec{A}_0 \right| \dd{t} Where the second part follows from the change in :math:`\vec{A}_0` being perpendicular to :math:`\vec{A}_0` for the infinitessimal interval :math:`\dd{t}`. The quantity :math:`\vec{\omega} \cp \vec{A}_0` points in the direction of :math:`\dd{R} \vec{A}_1`, so given that the rotation is about the same axis as the finite rotation :math:`{\mathsf{R}}(\omega t)`, .. math:: \omega \times \qty( {\mathsf{R}} \vec{A}_1) = {\mathsf{R}} \qty[ \vec{\omega} \cp \vec{A}_1] This implies that the order of rotations is irrelevant, so .. math:: \begin{aligned} \dd{{\mathsf{R}}} \vec{A}_1 &= {\mathsf{R}}(\omega t) \qty[ \vec{\omega} \cp \vec{A}_1] \dd{t} \nonumber \\ \implies \dd{\vec{A}_0} &= {\mathsf{R}}(\omega t) \qty[ \dd{\vec{A}_1} + \vec{\omega} \cp \vec{A}_1] \dd{t} \nonumber \\ \label{eq:2} \dot{\vec{A}}_0 &= {\mathsf{R}}( \omega t ) \qty[ \dot{\vec{A}}_1 + \vec{\omega} \cp \vec{A}_1 ]\end{aligned} The Coriolis and Centrifugal Forces =================================== Let a particle have positions :math:`\vec{x}_0` and :math:`\vec{x}_1` in the frames :math:`S_0` and :math:`S_1` respectively, with :math:`S_1` rotating relative to :math:`S_0` according to the transformation :math:`{\mathsf{R}}(\omega t)`, so .. math:: \begin{aligned} \vec{x}_0 &= {\mathsf{R}}(\omega t) \vec{x}_1 \\ &= {\mathsf{R}}(\omega t) \qty[ \dot{\vec{x}}_1 + \vec{\omega} \cp \vec{x}_1 ] &\omit\hfill \text{ (by eq. \eqref{eq:2})} \\ \implies \vec{v}_0 &= {\mathsf{R}}(\omega t) \qty[ \vec{v}_1 + \vec{\omega} \cp \vec{x}_1 ]\end{aligned} Letting :math:`\vec{A}_0 = \vec{v}_0`, and :math:`\vec{A}_1 = \vec{v}_1 + \vec{\omega} \cp \vec{x}_1`, then .. math:: \begin{aligned} \dot{\vec{v}}_0 &= {\mathsf{R}}(\omega t) \qty[ \dot{\vec{v}}_1 + \vec{\omega} \cp \dot{\vec{x}} + \vec{\omega} \cp \qty( \vec{v}_1 + \vec{\omega} \cp \vec{x}_1 ) ] \\ &= {\mathsf{R}}(\omega t) \qty[ \dot{\vec{v}}_1 + 2 \vec{\omega} \cp \vec{v}_1 + \vec{\omega} \cp ( \vec{\omega} \cp \vec{x}_1 )]\end{aligned} Since :math:`\vec{a}_i = \dot{\vec{v}}_i` is the acceleration observed in the frame :math:`S_i`, then .. math:: \vec{a}_1 = {\mathsf{R}}(-\omega t) \vec{a}_0 - 2 \vec{\omega} \cp \vec{v}_1 - \vec{\omega} \cp ( \vec{\omega} \cp \vec{x}_1 ) So the acceleration is not the same in each frame, and since in the individual frames Newton’s laws are valid, we see two additional forces, .. math:: \begin{aligned} \label{eq:3} \vec{f}~{cor} &= - 2 m \vec{\omega} \cp \vec{v}_1 \\ \vec{f}~{cen} &= - m \vec{\omega} \cp \qty( \vec{\omega} \cp \vec{x}_1 )\end{aligned} Respectively the Coriolis and Centrifugal forces. Motion at the Earth’s Surface ============================= The coordinate system on the Earth’s surface is defined using two coordinates, latitude, :math:`\lambda`, and longitude, :math:`\beta`. We also have a rotation vector, :math:`\vec{\Omega}`. A point close to the surface is specified by three coordinates: altitude, latitude, and longitude, and its velocity has the vector .. math:: \vec{v} = \qty( v~{long}, v~{lat}, v~{alt}) an object near the Earth’s surface will experience a Coriolis force, .. math:: \vec{f}~{cor} = - 2m \vec{\Omega} \cp \vec{v} and we have .. math:: \vec{\Omega} = \qty( 0, \Omega \cos(\lambda), \Omega \sin(\lambda) ) Thus .. math:: \begin{aligned} \vec{f}~{cor} &= -2m \qty( 0, \Omega \cos(\lambda), \Omega \sin(\lambda) ) \cp \qty( v~{long}, v~{lat}, v~{alt}) \nonumber\\ &= - 2 m \Omega \begin{pmatrix} v~{alt} \cos(\lambda) - v~{lat} \sin(\lambda)\\ v~{long} \sin(\lambda) \\ - v~{long} \cos(\lambda) \end{pmatrix} \nonumber \\ & \text{ if } v~{alt} = 0 \nonumber \\ &= -2m \Omega \begin{pmatrix} - v~{lat} \sin(\lambda) \\ v~{long} \sin(\lambda) \\ 0 \end{pmatrix} \nonumber \\ &= - 2m \qty(0 , 0 , \Omega \sin(\lambda) ) \cp \qty( v~{long}, v~{lat}, 0) \nonumber \\ \therefore \vec{f}~{cor} &= - 2 m \vec{\Omega}~{alt} \cp \vec{v}\end{aligned} The Foucalt Pendulum ==================== The plane of a pendulum’s motion will rotate over time in a rotating reference frame. Let :math:`S_1` be the rotating reference frame of the Earth, and :math:`S_2` be a frame rotating with angular velocity :math:`\omega_2 \propto \Omega~{alt}`. The accelerations in the two frames satisfy .. math:: \label{eq:1} \vec{a}_1 = {\mathsf{R}} \qty[ \vec{a}_2 + 2 \vec{\omega}_2 \cp \vec{v}_2 + \vec{\omega}_2 \cp ( \vec{\omega}_2 \cp \vec{x}_2 )] where :math:`\vec{x}_i`, :math:`\vec{v}_i`, and :math:`\vec{a}_i` are respectively the position, velocity, and accleration in the :math:`i`\ th frame. Assuming both :math:`\vec{\Omega}` and :math:`\vec{\omega}_2` are small, then the centrifugal term can be neglected, and .. math:: \vec{a}_1 = {\mathsf{R}} \qty[ \vec{a}_2 + 2 \vec{\omega}_2 \cp \vec{v}_2 ] we know .. math:: \vec{a}_1 = \vec{g} - 2 \vec{\Omega}~{alt} \cp \vec{v}_2 For :math:`\vec{g}` the acceleration due to gravity, so, given that the pendulum undergoes horizontal motion, and we can neglect its vertical motion, ignoring quadratic terms, .. math:: \vec{v}_1 \approx {\mathsf{R}} \vec{v}_2 and so .. math:: \vec{g} - 2 {\mathsf{R}} \qty[ \vec{\Omega}~{alt} \cp \vec{v}_2 ] = {\mathsf{R}} \qty[ \vec{a}_2 + 2 \vec{\omega}_2 \cp \vec{v}_2 ] thus, multiplying both sides by :math:`{\mathsf{R}}^{-1}`, .. math:: \label{eq:4} \vec{a}_2 = {\mathsf{R}}^{-1} \vec{g} and so the acceleration of the bob is simply the acceleration due to gravity transformed into a different frame, and in :math:`S_2` it appears as if only gravity acts, so this represents a frame which is rotating to counteract the rotation of the pendulum’s plane, thus demonstrating that the plane is rotating.