Hermite Polynomials =================== Hermite polynomials are the solutions to the hermite equation, .. math:: \label{eq:hermitede} \dv[2]{y}{x} - 2x \dv{y}{x} + 2n y = 0 Hermite polynomials are solutions to the radial part of the Schrodinger equation for the simple harmonic oscillator. Just like Legendre polynomials and Bessel functions we can define Hermite polynomials, :math:`H_n (x)` via a generating function: .. math:: \label{eq:hermite} g(x,t) = e^{-t^2 + 2tx} = \sum^\infty_{n=0} H_n(x) \frac{t^n}{n!} Recurrence Relations for Hermite polynomials -------------------------------------------- First we diferentiate with respect to :math:`t`, .. math:: \frac{\partial}{\partial t} g(x,t) = (-2t+2x) e^{-t^2+2tx} = \sum^{\infty}_{n=1} H_n(x) \frac{t^{n-1}}{n!} Expanding, and putting into the generating function again, .. math:: -2 \sum^{\infty}_{n=0} H_n(x) \frac{t^{n+1}}{n!} + 2x \sum^{\infty}_{n=0} H_n(x) \frac{t^n}{n!} = \sum^{\infty}_{n=1} H_n(x)\frac{t^{n-1}}{(n-1)!} Relabelling the indices, .. math:: -2 \sum^{\infty}_{n=1} nH_{n-1}(x) \frac{t^{n}}{n!} + 2x \sum^{\infty}_{n=0} H_n(x) \frac{t^n}{n!} = \sum^{\infty}_{n=1} H_{n+1}(x)\frac{t^n}{n!} and finally equating coefficients of :math:`t^n`, .. math:: \label{eq:recurrencehermite} H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x) \qquad (n \ge 1) If we instead differentiate with respect to :math:`x`, .. math:: \pdv{x}g(x,t) = 2t e^{-t^2+2tx} = \sum_{n=0}^{\infty} H^{\prime}_n(x) \frac{t^n}{n!} and substitute in :math:`g`, .. math:: 2 \sum_{n=0}^{\infty} H_n(x) \frac{t^{n+1}}{n!} = \sum_{n=1}^{\infty} H^{\prime}_n(x) \frac{t^n}{n!} and relabelling, .. math:: 2 \sum_{n=1}^{\infty} H_{n-1}(x) \frac{t^{n}}{(n-1)!} = \sum_{n=1}^{\infty} H^{\prime}_n(x) \frac{t^n}{n!} and then equating coeffients of :math:`t^n`, .. math:: \label{eq:recurrencehermite2} H_n^{\prime}(x) = 2n H_{n-1}(x) These can be used to derive the ordinary differential equation which motivates these polynomials, from the previous results we can find .. math:: H_{n+1}(x) = 2x H_n(x) - H^{\prime}_n(x) and then differentiate with respect to :math:`x`, .. math:: \begin{aligned} H^{\prime}_{n+1}(x) &= 2 H_n(x) + 2x H^{\prime}_n(x) - H^{\prime \prime}_n(x) \\ 2(n+1)H_{n}(x) &= 2 H_n(x) + 2x H^{\prime}_n(x) - H^{\prime \prime}_n(x) \end{aligned} and so .. math:: \dv[2]{H_n(x)}{x} - 2x \dv{H_n(x)} + 2n H_n(x) = 0 It is possible to use the recurrence relations to find the Hermite polynomials, so .. math:: \begin{aligned} H_0(x) &= 1 \\ H_1(x) &= 2x \\ H_2(x) &= 4x^2 - 2 \\ H_3(x) &= 8x^3 - 12x \\ H_4(x) &= 16x^4 - 48x^2 + 12\end{aligned} Properties of the Hermite Polynomials ------------------------------------- The Hermite polynomials are symmetric about :math:`x=0`, so .. math:: \label{eq:parityhermite} H_n(-x) = (-1)^n H_n(x) The Hermite polynomials can be described by a specific series of the form .. math:: \label{eq:hermiteseriesspef} H_n(x) = \sum_{m=0}^{\frac{n}{2}}(-1)^m (2x)^{n-2m} \frac{n!}{(n-2m)!m!} And Rodrigues’s equation for Hermite polynomials also exists *proof is an exercise* .. math:: \label{eq:rodrigueshermite} H_n(x) = (-1)^n e^{x^2} \dv[n]{x} \qty(e^{-x^2}) Orthogonality of Hermite Polynomials ------------------------------------ It is possible to show the orthogonality of the Hermite polynomials. Starting at Hermite’s equation, .. math:: \begin{aligned} H_n^{\prime \prime}(x) - 2x H^\prime_n (x) + 2n H_n (x) &= 0 \\ \dv{x} \qty( e^{-x^2} \dv{x} H_n (x) ) + 2n e^{-x^2} H_n(x) &=0 \end{aligned} then, proceeding in much the same way as with Legendre polynomials in section [sec:orthogonallegendre], .. math:: \begin{aligned} \begin{split} H_m(x) \dv{x} \qty[ e^{-x^2} \dv{x} H_n(x) ] - H_n(x) \dv{x} \qty[ e^{-x^2} \dv{x} H_m(x)] \\= -H_m(x) \cdot 2 n e^{-x^2} H_n(x) + H_n(x) \cdot 2 m e^{-x^2} H_m(x) \end{split}\end{aligned} .. math:: \begin{aligned} \begin{split} \int_{-\infty}^{\infty} H_m(x) \dv{x} \qty[ e^{-x^2} \dv{x} H_n(x)] \dd{x} \\= \qty[ H_m(x) e^{-x^2} \dv{x} H_n(x)]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \qty[ \dv{x} H_m(x)] e^{-x^2} \dv{x} H_n(x) \dd{x} \end{split}\end{aligned} .. math:: \begin{aligned} 2(m-n) \int_{-\infty}^{\infty} H_n(x) H_m(x) e^{-x^2} \dd{x} &= 0 \\ \therefore \int_{-\infty}^{\infty} H_n(x) H_m(x) e^{-x^2} \dd{x} &= 0 \text{ iff } n \neq m\end{aligned} Hermite polynomials are orthogonal on the interval :math:`[-\infty, \infty]` with a weighting of :math:`\exp(-x^2)`. .. math:: \begin{aligned} \int_{-\infty}^{\infty} g^2(x,t) e^{(-x^2)} \dd{x} &= \int_{-\infty}^{\infty} \exp(-2t^2+4tx-x^2) \dd{x} \\ &= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{t^{n+m}}{n! m!} \int_{-\infty}^{\infty} H_n(x) H_m(x) e^{(-x^2)} \dd{x} \\ &= e^{2t^2}\int_{-\infty}^{\infty} e^{-x^2} \dd{x}\\ &= e^{2t^2} \sqrt{\pi} \\ &= \sqrt{\pi} \sum_{n=0}^{\infty} \frac{2^n}{n!} t^{2n}\end{aligned} Finally, equating powers of :math:`t^{2n}` gives .. math:: \int_{-\infty}^{\infty} \qty[ H_n(x)]^2 \exp(-x^2) = 2^n \sqrt{\pi} n! so, .. math:: \label{eq:hermiteorthoweight} \int_{-\infty}^{\infty} H_n(x) H_m(x) \exp(-x^2) \dd{x} = 2^n \sqrt{\pi} n! \delta_{nm} it is also possible to remove the weighting by redefining the polynomial as .. math:: \phi_n(x) := \exp(-x^2) H_n(x) in this case .. math:: \label{eq:hermiteorthonoweight} \int_{-\infty}^{\infty} \phi_n(x) \phi_m(x) \dd{x} = 2^n \sqrt{\pi} n! \delta_{nm} these, however, are solutions not of Hermite’s equation, but of a slightly variant equation, .. math:: \label{eq:modhermiteequation} \phi^{\prime \prime}_n(x) + (1-x^2+2n) \phi_n(x) = 0 The Quantum Harmonic Oscillator ------------------------------- Returning to the one-dimensional time-independent Schrödinger equation, .. math:: \label{eq:1} - \frac{\hbar^2}{2m} \dv[2]{x} \psi(x) + V(x) \psi(x) = E \psi(x) with :math:`m` the mass of the particle, and :math:`E` its energy. For the simple harmonic oscillator, .. math:: V(x) \half m \omega^2 x^2 so .. math:: \psi^{\prime \prime} (x) + \qty( - \frac{m^2 \omega^2}{\hbar^2} x^2 + \frac{2m E}{\hbar^2} ) \psi(x) = 0 which has a form very similar to the modified Hermite equation of the previous section, and these describe the quantum harmonic oscillator. Let :math:`y = ax` with :math:`a = \sqrt{\frac{m \omega}{\hbar}}`, so .. math:: \dv[2]{\psi}{y} + \qty( -y^2 + \frac{2mE}{\hbar^2 a^2} ) \psi = 0 Comparing the two equations, we get the solutions .. math:: \label{eq:2} \psi_n (x) = \sqrt{\frac{a}{2^n \sqrt{\pi} n!}} \exp( - \frac{a^2 x^2}{2} ) H_n(ax) which includes a normalisation constant. The energy is then given by the equation .. math:: \begin{aligned} \frac{2 m E}{\hbar^2 a^2} &= 1 + 2n \nonumber\\ \frac{2E}{\hbar \omega} &= 1 + 2n \nonumber\\ E &= \hbar \omega \qty(n + \half)\end{aligned} but why does :math:`n` need to be an integer? The oscillator must have :math:`\Psi \to 0` as :math:`x \to \infty`. Taking solutions of the form .. math:: \Psi \approx \exp( - \frac{x^2}{2} ) H_n(x) only guarantees this if :math:`n` is an integer; this can be demonstrated by returning to Hermite’s equation, equation ([eq:hermitede]), and letting :math:`y = \sum_{k=0}^{\infty} c_k x^k`, so that .. math:: \sum_k c_k \qty( k(k-1) x^{k-2} - 2kx^k + 2nx^k ) = 0 This must be true for each power of :math:`x` individually, so .. math:: c_{k+2} (k+2) (k+1) - c_k(2k-2n)=0 and if the series in :math:`k` goes on *ad infinitum*, we have the behaviour .. math:: \frac{c_{k+2}}{c_k} = \frac{2k - 2n}{(k+1)(k+2)} \to \frac{2}{k} \quad \text{as} \quad k \to \infty This has the power series behaviour of :math:`\exp(x^2)`, which would imply that :math:`\Psi \approx e^{x^2} e^{-\frac{x^2}{2}} \approx e^{\frac{x^2}{2}}`, giving “bad” behaviour as :math:`x \to \infty`. If the series truncates this behaviour will not occur. This happens if :math:`2n=2k` for some :math:`k`, that is, for :math:`n \in \mathbb{Z}`. The solution of Hermite’s equation is a finite polynomial, and the solution for :math:`\Psi` must be physical, so this forces :math:`n` to be an integer. The harmonic oscillator can also be solved using ladder operators, these work due to the recurrence relation in equation ([eq:recurrencehermite2]). Writing .. math:: \psi_n(x) = \sqrt{\frac{1}{2^n \sqrt{\pi} n!}} \exp( - \frac{x^2}{2} ) H_n(x) and, for simplicity, letting :math:`a=1`, then .. math:: \begin{aligned} \frac{1}{\sqrt{2}} \qty(x + \dv{x}) \psi_n(x) &= \sqrt{\frac{1}{2^{n+1} \sqrt{\pi} n!}} \qty( x+ \dv{x}) \exp(- \frac{x^2}{2}) H_n(x) \\ %&= \sqrt{\frac{1}{2^{n+1} \sqrt{\pi} n!}} \qty( x \exp( - \frac{x^2}{2} ) H_n(x) - x \exp( - \frac{x^2}{2} ) H_n(x) + \exp( - \frac{x^2}{2}) H^{\prime}_n(x) ) \\ & = \sqrt{n} \psi_{n-1}(x)\end{aligned} This is a lowering operator, it is also possible, using either recurrence relations or the Rodrigues’ formula, that .. math:: \frac{1}{\sqrt{2}} \qty( x - \dv{x} ) is a raising operator.