One-forms ========= Consider :math:`T_P`, the tangent space of vectors at a point :math:`P`. A one-form, :math:`\of{\omega}` at :math:`P` associates a vector :math:`\vec{V}` at P to a real number, :math:`\of{\omega}(\vec{V})`. This function is linear; for vectors :math:`\vec{V}` and :math:`\vec{W}`, and real numbers :math:`a` and :math:`b`, .. math:: \label{eq:8} \of{\omega}( a \vec{V} + b \vec{W} ) = a \of{\omega}(\vec{V}) + b \of{\omega}(\vec{W}) can be multiplied by scalars, .. math:: \label{eq:9} (a \of{\omega})(\vec{V}) = a [ \of{\omega}(\vec{V})] and have the property .. math:: \label{eq:10} (\of{\omega} + \of{\sigma}) (\vec{V}) + \of{\omega}(\vec{V}) + \of{\sigma}(\vec{V}) They satisfy the axioms of a vector space, and are indeed the duals of vectors, and have a tangent vector space :math:`T^{*}_P`. A field of one-forms can represent the gradient of a function :math:`f`; such a field is denoted :math:`\dd{f}`, .. math:: \of{\dd{}}f (\dv*{\lambda}) = \dv{f}{\lambda} In the vector space :math:`T^{*}_P` any :math:`n` linearly independent one-forms can constitute a basis, however selecting a set of basis vectors, :math:`\set{\vec{e}_i}` in :math:`T_P` induces a preferred basis on :math:`T^{*}_P`, the dual basis :math:`\set{\of{\omega}^i}`. These have the property .. math:: \of{\omega}^i(\vec{e}_j) = \delta^i_j