=============== Operator theory =============== Linear operators can be further generalised to a wider class of *differential operators*, :math:`{\cal L}` which act on eigenfunctions :math:`y_i(x)` which have eigenvalues :math:`\lambda_i`, and weighted by a weight function :math:`\rho(x)`. [Sturm-Liouville Operator] The Sturm-Liouville operator is defined as .. math:: {\cal L} = - \qty( p(x) \dv[2]{x} + r(x) \dv{x} + q(x) ) [Sturm-Liouville Equation] The Sturm-Liouville equation is a differential equation of the form .. math:: {\cal L} y = \lambda \rho(x) y These can be simplified if :math:`r(x) = p^{\prime}(x)`, when .. math:: {\cal L} = - \qty( \dv{x} \qty( p(x) \dv{x} ) + q(x) ) and so .. math:: {\cal L} y = - (py^{\prime})^{\prime} - qy Provided we set approporiate conditions on the functions :math:`p(x), q(x)`, and, :math:`\rho(x)`, and use appropriate boundary conditions on a range :math:`[a,b]`, we can make a number of assertions about the SL-equation. [Properties of the Sturm-Liouville Operator] [the:hermitiansloper] The Sturm-Liouville Operator is Hermitian over the range :math:`[a,b]` An operator is Hermitian over the range :math:`[a,b]` if .. math:: \int_a^b f^{*}(x) \qty[ {\cal L} g(x)] \dd{x} = \int_a^b \qty[{\cal L} f(x)]^{*} g(x) \dd{x} In the case of the SL operator, .. math:: {\cal L} y = - \qty( p y^{\prime})^{\prime} - qy Applying :math:`{\cal L}` to :math:`y_i`, and premultiplying by :math:`y_i^{*}`, then integrating over :math:`[a,b]`, .. math:: \begin{aligned} \int_b^a y_i^{*} {\cal L} y_i \dd{x} &= - \int_a^b \qty( y_i^{*} (p y_j^{\prime})^{\prime} + y_i^{*} q y_j ) \dd{x} \\ &= - \int_a^b y_i^{*} \qty(p y^{\prime}_j)^{\prime} \dd{x} - \int_a^b y_i^{*} q y_j \dd{x} \end{aligned} The first integral can be integrated by parts to yield .. math:: \int_a^b y_i^{*} \qty(p y^{\prime}_j)^{\prime} \dd{x} = - \qty[y_i^{*} p y^{\prime}_j]_a^b + \int_a^b \qty(y_i^{*})^{\prime} p y_j^{\prime} \dd{x} We set the boundary conditions to set .. math:: \qty[y_i^{*} p y^{\prime}_j]_a^b = 0 This leaves the integral, which can be solved by integrating again, .. math:: \int_a^b \qty(y_i^{*})^{\prime} p y_j^{\prime} \dd{x} = \qty[y_i^{*} p y^{\prime}_j]_a^b = 0 - \int_a^b \qty( \qty(y_i^{*})^{\prime} p )^{\prime} y_j \dd{x} Rearranging, and returning to the original integral, .. math:: \begin{aligned} \int_b^a y_i^{*} {\cal L} y_i \dd{x} &= - \int_a^b \qty[ y_j \qty( p (y_i^{*})^{\prime} )^{\prime} + y_j q y_i^{*}] \dd{x} \\ \int_a^b y_i^{*} \qty( {\cal L} y_j ) \dd{x} &= \int_a^b \qty( {\cal L} y_i)^{*} y_j \dd{x} \end{aligned} The eigenvalues of the Sturm-Liouville Operator are real. q From theorem [the:hermitiansloper] the operator is known to be Hermitian. From theorem [the:eigenvaluehermitian] we know that the eigenvalues of a Hermitian matrix are real. The eigenvalues of the Sturm-Liouville Operator form an ordered set :math:`\lambda_1 < \lambda_2 < \cdots < \lambda_n`. The eigenfunctions of the Sturm-Liouville Operator, :math:`y_i(x)` have :math:`i-1` zeros over the range :math:`[a,b]`. The normalised eigenfunctions, :math:`y_i(x)` of the Sturm-Liouville operator form an orthogonal basis, .. math:: \braket{y_i}{y_j} = \delta_{ij}