Fields of Scalars ================= A field is an algebraic structure with notions of addition, subtraction, multiplication, and division, satisfying certain axioms. The principle examples are :math:`\mathbb{Q}`, :math:`\mathbb{R}`, and :math:`\mathbb{C}`. .. prf:definition:: Field :label: field A field consists of a set, :math:`F`, whose elements are called scalars, together with two algebraic operations: addition and multiplication, for combining every pair of scalars, :math:`x, y \in F` to form the new scalars :math:`(x+y) \in F` and :math:`(x \times y) \in F`. These operations must satisfy the field axioms: .. prf:axiom:: Associativity For :math:`x,y,z \in F`, .. math:: \begin{aligned} (x+y)+ z &= x+(y+z) \\ (x\times y)\times z &= x \times (y \times z) \end{aligned} .. prf:axiom:: Distributivity .. math:: \begin{aligned} (x+y) \times z &= x \times z + y \times z \\ z \times (x + y) &= z \times x + z \times y \end{aligned} .. prf:axiom:: Commutativity .. math:: \begin{aligned} x + y &= y + x \\ x \times y &= y \times x \end{aligned} .. prf:axiom:: Zero and Unity There are unique and distinct elements, :math:`0, 1 \in F`, such that .. math:: \begin{aligned} x+0 &= x = 0 + x \\ x \times 1 &= x = 1 \times x \end{aligned} .. prf:axiom:: Existence of Additive and multiplicative inverses For :math:`x \in F` there exists a unique element :math:`-x \in F`, for which .. math:: x + (-x) = 0 = (-x)+x For each non-zero :math:`y \in F` there is a unique element, :math:`y^{-1} \in F`, the multiplicative inverse, for which .. math:: y \times (y^{-1}) = 1 = (y^{-1})\times y